Pharmaceutisch Weekblad

, Volume 14, Issue 3, pp 101–107 | Cite as

Differentiation between valproate-induced anticonvulsant effect, teratogenicity and hepatotoxicity

Aspects of species variation, pharmacokinetics, metabolism and implications of structural specificity for the development of alternative antiepileptic agents such as Δ2-valproate
  • Heinz Nau
  • H. Siemes
Recent Developments on Valproate and its Metabolites


Valproate is metabolized into a large number of compounds via various metabolic routes. Metabolic profiles depend on species and age. Hepatotoxicity may be correlated with abnormal metabolism, especially in young age. Teratogenicity is associated with specific structural requirements: a free carboxyl atom connected to a carbon atom which also carries a hydrogen, and two carbon chains. This provides a clue for the development of alternative antiepileptic agents.


Hepatic diseases Metabolites Neural tube defects Pharmacokinetics Steatosis Structure—activity relationship Teratogens Toxicology Valproic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zimmerman HJ, Ishak KG. Valproate-induced hepatic injury: analysis of 23 fatal cases. Hepatology 1982;2:591–7.PubMedGoogle Scholar
  2. 2.
    Zafrani ES, Berthelot P. Sodium valproate in the induction of unusual hepatotoxicity. Hepatology 1982;2:648–9.PubMedGoogle Scholar
  3. 3.
    Dreifuss FE, Santilli N, Langer DH, Sweeney KP, Moline KA, Menander KB. Valproic acid hepatic fatalities. A retrospective review. Neurology 1987;37:379–5.PubMedGoogle Scholar
  4. 4.
    Dreifuss FE, Langer DH, Moline KA, Maxwell JE. Valproic acid hepatic fatalities. II. US experience since 1984. Neurology 1989;39:201–7.PubMedGoogle Scholar
  5. 5.
    Scheffner D, König St, Rauterberg-Ruland I, Kochen W, Hofmann WJ, Unkelbach ST. Fatal liver failure in 16 children with valproate therapy. Epilepsia 1988;29:530–42.PubMedGoogle Scholar
  6. 6.
    Robert E, Rosa F. Valproate and birth defects. Lancet 1983;?:1142.Google Scholar
  7. 7.
    Lindhout D, Meinardi H. In utero exposure to valproate and spina bifida. Lancet 1984;2:396.CrossRefGoogle Scholar
  8. 8.
    Nau H, Rating D, Koch S, Häuser I, Helge H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother's milk and clinical status in neonates of epileptic mothers. J Pharmacol Exp 1981;219:768–77.Google Scholar
  9. 9.
    Nau H, Hendrickx AG. Valproic acid teratogenesis. ISI Atlas Sci Pharmacol 1987;1:152–6.Google Scholar
  10. 10.
    Jäger-Roman E, Deichel A, Jakob S, et al. Fetal growth, major malformations and minor anomalies in infants born to women receiving valproic acid. J Pediatr 1986;108:997–1004.PubMedGoogle Scholar
  11. 11.
    Huot C, Gauthier M, Lebel M, Larbrisseau A. Congenital malformations associated with maternal use of valproic acid. Can J Neurol Sci 1987;14:290–3.PubMedGoogle Scholar
  12. 12.
    Ardinger HH, Arkin JF, Blackston RD, et al. Verification of the fetal valproate syndrome phenotype. Am J Med Gen 1988;29:171–85.CrossRefPubMedGoogle Scholar
  13. 13.
    Schäfer H, Lührs R. Metabolite pattern of valproic acid. Part 1. Gaschromatographic determination of the valproic acid metabolite artifacts, heptanone-3,4- and 5-hydroxyvalproic acid lactone. Drug Res 1978;28:657–62.Google Scholar
  14. 14.
    Nau H, Wittfoht W, Schäfer H, Jakobs C, Rating D, Helge H. Valproic acid and several metabolites. Quantitative determination in serum, urine, breast milk and tissues by gas chromatography—mass spectrometry using selected ion monitoring. J Chromatogr 1981;226:69–78.Google Scholar
  15. 15.
    Tatsuhara T, Muro H, Matsuda Y, Imai Y. Determination of valproic acid and its metabolites by gas chromatography—mass spectrometry with selected ion monitoring. J Chromatogr 1987;399:183–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Rettenmeier AW, Howald WN, Levy RH, Witek DJ, Gordon WP, Porubek DJ, et al. Quantitave metabolic profiling of valproic acid in humans using automated gas chromatographic/mass spectrometric techniques. Biomed Environmen Mass Spectrom 1989;18:192–9.CrossRefGoogle Scholar
  17. 17.
    Kassahun K, Burton R, Abbott FS. Negative ion chemical ionization gas chromatography/mass spectrometry of valproic acid metabolites. Biomed Environmen Mass Spectrom 1989;18:918–26.CrossRefGoogle Scholar
  18. 18.
    Kassahun K, Farrel K, Zheng J, Abbott F. Metabolic profiling of valproic acid in patients using negative-ion chemical ionization gas chromatography—mass spectrometry. J Chromatogr 1990;527-327-41.Google Scholar
  19. 19.
    Nau H, Löscher WA. Valproic acid: Brain and plasma levels of the drug and its metabolites, anticonvulsant effects andγ-aminobutyric acid (GABA) metabolism in the mouse. J Pharmacol Exp Ther 1982;220:654–9.PubMedGoogle Scholar
  20. 20.
    Jakobs C, Löscher W. Identification of metabolites of valproic acid in serum of humans, dog, rat and mouse. Epilepsia 1978;19:591–602.PubMedGoogle Scholar
  21. 21.
    Heinemeyer G, Nau H, Hildebrandt AG, Roots I. Oxidation and glucuronidation of valproic acid in male rats — influence of phenobarbital, 3-methylcholanthrene,β-naphtoflavone and clofibrate. Biochem Pharmacol 1985;34:133–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Löscher W, Fisher JE, Nau H, Hönack D. Marked increase in anticonvulsant activity but decrease in wetdog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. Eur J Pharmacol 1988;150:221–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Löscher W, Fisher JE, Nau H, Hönack D. Valproic acid in amygdala-kindled rats. Alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 1989;250:1067–78.PubMedGoogle Scholar
  24. 24.
    Rettenmeier AW, Gordon WP, Prickett KS, Levy RH, Lockard JS, Thummel KE, et al. Metabolic fate of valproic acid in the Rhesus monkey. Drug Metab Dispos 1986;14:443–53.PubMedGoogle Scholar
  25. 25.
    Mast TJ, Cukierski MA, Nau H, Hendrickx AG. Predicting the human teratogenic potential of the anticonvulsant, valproic acid, from a non-human primate model. Toxicology 1986;39:11–9.CrossRefGoogle Scholar
  26. 26.
    Esaki K, Tanioka Y, Ogata T, Koizumi B, Koizumi H. Influence of sodium dipropylacetate (DPA) on the fetuses on the Rhesus monkey. CIEA Prelin Rep 1975;1:157–64.Google Scholar
  27. 27.
    Rettenmeier AW, Gordon WP, Prickett KS, Levy RH, Baillie TA. Biotransformation and pharmacokinetics in the Rhesus monkey of 2-n-propyl-4-pentenoic acid, a toxic metabolite of valproic acid. Drug Metab Dispos 1986;14:454–64.PubMedGoogle Scholar
  28. 28.
    Rettenmeier AW, Prickett KS, Gordon WP, Bjorge SM, Chang S-L, Levy RH, Baillie TA. Studies on the biotransformation in the perfused rat liver of 2-n-propyl-4-pentenoic acid, a metabolite of the antiepileptic drug valproic acid. Drug Metab Dispos 1985;13:81–96.PubMedGoogle Scholar
  29. 29.
    Prickett KS, Baillie TA. Metabolism of unsaturated derivatives of valproic acid in rat liver microsomes and destruction of cytochrome P-450. Drug Metab Dispos 1986;14:221–9.PubMedGoogle Scholar
  30. 30.
    Singh K, Orr JM, Abbott FS. Pharmacokinetics and enterohepatic circulation of 2-n-propyl-4-pentenoic acid in the rat. Drug Metabol Dispos 1988;16:848–52.Google Scholar
  31. 31.
    Baillie TA. Metabolic activation of valproic acid and drug-mediated hepatotoxicity. Role of the terminal olefin, 2-n-propyl-4-pentenoic acid. Chem Res Toxicol 1988;1:195–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Kochen W, Sprunck HP. Five doubly unsaturated metabolites of valproic acid in urine and plasma of patients on valproic acid therapy. J Clin Chem Clin Biochem 1984;22:309–17.PubMedGoogle Scholar
  33. 33.
    Siemes H, Spohr HL, Michael T, Nau H. Therapy of infantile spasms with valproate — results of a controlled study. Epilepsia 1988;29:553–60.PubMedGoogle Scholar
  34. 34.
    Fisher E, Siemes H, Pund R, Wittfoht W, Nau H. Valproic acid metabolites in serum and urine during anticonvulsive therapy in children with infantile spasms. Abnormal metabolite pattern associated with reversible hepatotoxicity. Epilepsia. In press.Google Scholar
  35. 35.
    Nau H, Siemes H, Fisher E, Pund R, Wittfoht W, Drews E. Valproic acid metabolite patterns in 195 children with epilepsy. Effect of age, dose, comedication, duration of treatment and clinical factors. In: Levy R, ed. Valproate-associated hepatotoxicity. New York: Raven Press. In press.Google Scholar
  36. 36.
    Fisher E, Pund R, Wittfoht W, Nau H, Siemes H, Spohr HL. Einflu ß klinischer Faktoren auf die Valproatmetabolisierung epileptischer Kinder. Aktuelle Neuropädiatrie. In press.Google Scholar
  37. 37.
    Paganini M, Zaccara G, Moroni F, et al. Lack of relationship between sodium valproate-induced adverse effects and the plasma concentration of its metabolite 2-propylpenten-4-oic acid. Eur J Clin Pharmacol 1987;32:219–22.CrossRefPubMedGoogle Scholar
  38. 38.
    Tennison MB, Miles MV, Pollack GM, Thorn MD, Dupuis RD. Valproate metabolites and hepatotoxicity in an epileptic population. Epilepsia 1988;29:543–7.PubMedGoogle Scholar
  39. 39.
    Kuhara T, Inoue Y, Matsumoto M, et al. Markedly increasedω-oxidation of valproate in fulminant hepatic failure. Epilepsia 1990;31:214–7.PubMedGoogle Scholar
  40. 40.
    Eadie MJ, Hooper WD, Dickinson RG. Valproateassociated hepatotoxicity and its biochemical mechanism. Med Toxicol 1988;3:85–106.Google Scholar
  41. 41.
    Gerber N, Dickinson RG, Harland RC, et al. Reye-like syndrome associated with valproic acid therapy. J Pediatr 1979;95:142–4.PubMedGoogle Scholar
  42. 42.
    Schäfer H, Lührs R. Responsibility of the metabolite pattern for potential side effects in the rat being treated with valproic acid, 2-propylpenten-2-oic acid, and 2-propyl-penten-4-oic acid. In: Levy RH, Pitlick WH, Eichelbaum M, Meijer J, eds. Metabolism of antiepileptic drugs. New York: Raven Press, 1984:73–83.Google Scholar
  43. 43.
    Kesterton JW, Granneman GR, Machinist JM. The hepatotoxicity of valproic acid and its metabolites in rats. I. Toxicologic, biochemical and histopathologic studies. Hepatology 1984;4:1143–52.PubMedGoogle Scholar
  44. 44.
    Granneman GR, Wang SI, Kesterton JW, Machinist JM. The hepatotoxicity of valproic acid and its metabolites in rats. II. Intermediary and valproic acid metabolism. Hepatology 1984;4:1153–1158.PubMedGoogle Scholar
  45. 45.
    Nau H, Löscher W. Valproic acid and metabolites: Pharmacological and toxicological studies. Epilepsia 1984;25 Suppl I:14–22.Google Scholar
  46. 46.
    Kochen W, Schneider A, Ritz A. Abnormal metabolism of valproic acid in fatal hepatic failure. Eur J Pediatr 1983;141:30–35.CrossRefPubMedGoogle Scholar
  47. 47.
    Kuhara T, Inoue Y, Matsumoto M, et al. Altered metabolic profiles of valproic acid in a patient with Reye's syndrome. Clin Chim Acta 1985;145:135–42.CrossRefPubMedGoogle Scholar
  48. 48.
    Carter BS, Stewart JM. Valproic acid prenatal exposure. Association with lipomyelomeningocele. Clin Pediatr 1989;28:81–85.Google Scholar
  49. 49.
    Robert E. Valproic acid as a human teratogen. Cong Anom 1988;28 Suppl:S71-S80.Google Scholar
  50. 50.
    Nau H. Species differences in pharmacokinetics and drug teratogenesis. Environm Health Perspect 1986;70:113–29.Google Scholar
  51. 51.
    Lammer EJ, Sever LE, Oakley GP. Teratogen update. Valproic acid. Teratology 1987;35:465–73.CrossRefPubMedGoogle Scholar
  52. 52.
    Nau H. Pharmakokinetische Grundlagen der Teratogenität von Arzneimitteln. Internist 1988;29:179–92.PubMedGoogle Scholar
  53. 53.
    Hendrickx AG, Nau H, Binkerd P, Rowland JM, Rowland JR, Cukierski M, et al. Valproic acid developmental toxicity and pharmacokinetics in the Rhesus monkey. An interspecies comparison. Teratology 1988;38:329–45.CrossRefPubMedGoogle Scholar
  54. 54.
    Michejda M, McCollough D. New animal model for the study of neural tube defects. Z Kinderchir 1987;42 Suppl I:32–5.PubMedGoogle Scholar
  55. 55.
    Nau H. Valproic acid teratogenicity in mice after various administration and phenobarbital-pretreatment regimes: The parent drug and not one of the metabolites assayed is implicated as teratogen. Fund Appl Toxicol 1986;6:662–8.CrossRefGoogle Scholar
  56. 56.
    Nau H, Zierer R, Gansau Ch, Neubert D, Spielmann H. A new model for embryotoxicity testing. Teratogenicity and pharmacokinetics of valproic acid following constant-rate administration in the mouse using human therapeutic drug and metabolite concentrations. Life Sci 1981;29:2803–14.CrossRefPubMedGoogle Scholar
  57. 57.
    Nau H. Teratogenic valproic acid concentrations: infusion by implanted minipumps vs. conventional injection regimen in the mouse. Toxicol Appl Pharmacol 1985;80:243–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Dencker L, Nau H, D'Argy R. Marked accumulation of valproic acid in embryonic neuroepithelium of the mouse during early organogenesis. Teratology 1990;41:699–706.CrossRefPubMedGoogle Scholar
  59. 59.
    Nau H, Löscher W. Pharmacologic evaluation of various metabolites and analogs of valproic acid: teratogenic potencies in mice. Fund Appl Toxicol 1986;6:669–76.CrossRefGoogle Scholar
  60. 60.
    Hauck R-S, Nau H. Untersuchungen zu den strukturellen Grundlagen der teratogenen Wirkung des Antiepileptikums Valproinsäure (VPA): 2-n-Propyl-4-pentinsäure (4-yn-VPA), das erste Strukturanalogon mit signifikant höherer teratogener Aktivät als VPA. Naturwissenschaft 1989;76:528–9.CrossRefGoogle Scholar
  61. 61.
    Hauck RS, Wegner C, Blumtritt P, Fuhrhop JH, Nau H. Asymmetric synthesis and teratogenic activity of (R)- and (S)-2-ethylhexanoic acid, a metabolite of the plasticizer di-(2-ethylhexyl)phthalate. Life Sci 1989;46:513–8.CrossRefGoogle Scholar
  62. 62.
    Nau H, Löscher W. Valproic acid. Brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. J Pharmacol Exp Ther 1982;220:654–9.PubMedGoogle Scholar
  63. 63.
    Löscher W, Nau H. Valproic acid: Metabolite concentrations in plasma and brain, anticonvulsant activity, and effects on GABA metabolism during subchronic treatment in mice. Arch Int Pharmacodyn Ther 1982;257:20–31.PubMedGoogle Scholar
  64. 64.
    Löscher W, Nau H. Distribution of valproic acid and its metabolites in various brain areas of dogs and rats following acute and prolonged treatment. J Pharmacol Exp Ther 1983;226:845–54.PubMedGoogle Scholar
  65. 65.
    Hauck R-S, Nau H. Asymmetric synthesis and enantioselective teratogenicity of 2-n-propyl-4-pentenoic acid (4-en-VPA), an active metabolite of the anticonvulsant drug, valproic acid. Toxicol Lett 1989;49:41–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Chapman AG, Meldrum BS, Mendes E. Acute anticonvulsant activity of structural analogues of valproic acid and changes in brain GABA and aspartate content. Life Sci 1983;32:2023–31.CrossRefPubMedGoogle Scholar
  67. 67.
    Löscher W, Nau H. Pharmacological evaluation of various metabolites and analogues of valproic acid — anticonvulsant and toxic potencies in mice. Neuropharmacology 1985;24:427–35.CrossRefPubMedGoogle Scholar
  68. 68.
    Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of valpromide derivatives with antiepileptic activity. Pharm Res 1989;6(8):683–689.CrossRefPubMedGoogle Scholar
  69. 69.
    Nau H, Löscher W, Schäfer H. An active valproic acid metabolite with low embryotoxicity as alternative antiepileptic drug? Neurology 1984;34:400–2.Google Scholar
  70. 70.
    Nau H. Transfer of valproic and its main active unsaturated metabolite to the gestational tissue: correlation with neural tube defect formation in the mouse. Teratology 1986;33:21–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Glasgow AM, Chase P. Production of the features of Reye's syndrome in rats with 4-pentenoic acid. Pediatr Res 1975;9:133–8.PubMedGoogle Scholar
  72. 72.
    Kondo T, Otani K, Hirano T, Kaneko S, Fukushima Y. The effects of phenytoin and carbamazepine on serum concentrations of mono-unsaturated metabolites of valproic acid. Br J Clin Pharmacol 1990;29:116–9.PubMedGoogle Scholar
  73. 73.
    Löscher W, Nau H. Comparative transfer of valproic acid and of an active metabolite into brain and liver: Possible pharmacological and toxicological consequences. Arch Int Pharmacodyn Ther 1984;270:192–202.PubMedGoogle Scholar
  74. 74.
    Nau H, Löscher W. Valproic acid and active unsaturated metabolite (2-en). Transfer to mouse liver following human therapeutic doses. Biopharm Drug Dispos 1985;6:1–8.PubMedGoogle Scholar
  75. 75.
    Vorhees CV, Nau H. Lack of teratogenicity oftrans-2-ene-valproic acid compared to valproic acid in rats. Teratology. In press.Google Scholar
  76. 76.
    Lewandowski C, Klug S, Nau H, Neubert D. Pharmacokinetic aspects of drug effectsin vitro. Effects of serum protein binding on concentration and teratogenicity of valproic acid and 2-en-valproic acid in whole embryos in culture. Arch Toxicol 1986;58:239–42.CrossRefPubMedGoogle Scholar
  77. 77.
    Nau H, Lewandowski C, Klug S, Neubert D. Pharmacokinetic aspects of drug effectsin vitro (II). Placental transfer to the embryo and activity of some carboxylic acids structurally related to valproic acid in whole embryos in culture. Tox Vitro 1988;2:169–74.CrossRefGoogle Scholar
  78. 78.
    Trotz M, Wegner C, Nau H. Valproic acid-induced neural tube defects. Reduction by folinic acid in the mouse. Life Sci 1987;41:103–10.CrossRefPubMedGoogle Scholar
  79. 79.
    Wegner C, Nau H. Diurnal variation of folate concentrations in mouse embryo and plasma: The protective effect of folinic acid on valproic acid-induced teratogenicity is time dependent. Reprod Toxicol. In press.Google Scholar
  80. 80.
    Taillandier G, Benot-Guyot JL, Boucherie A, Broil M, Eymard P. Recherches dans la serie dipropylacetique XII. Acides et alcools aliphatiques ramifies anticonvulsivants. Eur J Med Chem Chim Ther 1975;10:453–462.Google Scholar
  81. 81.
    Löscher W, Nau H, Marescaux C, Vergnes M. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol 1984;99:211–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Haj-Yehia A, Bialer M. Structure—pharmacokinetic relationships in a series of short fatty acid amides that possess anticonvulsant activity. J Pharm Sci 1990;79:719–24.PubMedGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1992

Authors and Affiliations

  • Heinz Nau
    • 1
  • H. Siemes
    • 2
  1. 1.Institute of Toxicology and EmbryopharmacologyFree University BerlinBerlin 33Germany
  2. 2.Rittberg KinderklinikBerlin 45Germany

Personalised recommendations