Pharmaceutisch Weekblad

, Volume 11, Issue 6, pp 199–206 | Cite as

Oxidative stress

Biochemistry and human disease
  • A. Bast
  • R. J. A. Goris
Review Articles


The early involvement of free radicals in the evolution of life may explain their ubiquitous presence and vital physiological role. Imbalance between protection against free radicals and their generation, explains the likely association of various diseases with toxic oxygen species. An elaborate defence system against oxygen-free radicals exists. The effects of oxidative stress are manifold. Direct demonstration of oxygen radicals in intact biological systems is difficult. Frequently, effect-related measurements are used in this respect. The clinical conditions adult respiratory distress syndrome and multiple organ failure, reflex sympathetic dystrophy and sugar cataract are discussed and the role of oxygen radicals in the aetiology of these diseases are described.


Cataract Free radicals Multiple organ failure Oxygen Reflex sympathetic dystrophy Respiratory distress syndrome, adult Stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harman D. Free radicals: aging and disease. Ann Intern Med 1987;107:539–41.Google Scholar
  2. 2.
    Halliwell B, Cutteridge JMC. Free radicals in biology and medicine. Oxford: Clarendon Press, 1985.Google Scholar
  3. 3.
    McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 1969;244:6049–55.PubMedGoogle Scholar
  4. 4.
    Sies H. Biochemistry of oxidative stress. Angew Chem Int Ed Engl 1986;25:1058–71.Google Scholar
  5. 5.
    Minotti G, Aust SD. The requirement for iron (III) in the initiation of lipid peroxidation by iron (II) and hydrogen peroxide. J Biol Chem 1987;262:1098–104.PubMedGoogle Scholar
  6. 6.
    Kappus H. Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance In: Sies H, ed. Oxidative stress. New York: Academic Press, 1985.Google Scholar
  7. 7.
    McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159–63.PubMedGoogle Scholar
  8. 8.
    Leurs R, Rademaker B, Kramer K, Timmerman H, Bast A. The effects of 4-hydroxy-2,3-trans-nonenal onβ-adrenoceptors of rat lung membranes. Chem Biol Interact 1986;59:211–8.PubMedGoogle Scholar
  9. 9.
    Hornsby PJ, Crivello JF. The role of lipid peroxidation and biological anti-oxidants in the function of the adrenal cortex. Part 1. A background review. Mol Cell Endocrinol 1983;30:1–20.PubMedGoogle Scholar
  10. 10.
    Gutteridge JMC, Smith A. Anti-oxidant protection by haemopexin of haem-stimalted lipid peroxidation. Biochem J 1988;256:861–5.PubMedGoogle Scholar
  11. 11.
    Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of taurine, hypotaurine, and their metabolic precursors. Biochem J 1988:256:251–5.PubMedGoogle Scholar
  12. 12.
    Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an anti-oxidant of possible physiological importance. Science 1987;235:1043–6.PubMedGoogle Scholar
  13. 13.
    Dupin AM, Bemanandzara M, Stvolinskii SL, Boldyrev AA, Severin SE. Muscle dipeptides. Natural inhibitors of lipid peroxidation. Biokhimya 1987;52:782–7.Google Scholar
  14. 14.
    Bast A. Is formation of reactive oxygen by cytochrome P-450 perilous and predictable? TiPS 1986;7:266–70.Google Scholar
  15. 15.
    Bast A, Haenen GRMM. Cytochrome P-450 and glutathione: what is the significance of their interrelationship in lipid peroxidation. TiBS 1984;9:510–3.Google Scholar
  16. 16.
    Bast A, Haenen GRMM. Interplay between lipoic acid and glutathione in the protection against microsomal lipid peroxidation. Biochim Biophys Acta 1988;963:558–61.PubMedGoogle Scholar
  17. 17.
    Marklund SL. Extracellular Superoxide dismutase and other Superoxide dismutase isoenzymes in tissues from nine mammalian species. Biochem J 1984;222:649–55.PubMedGoogle Scholar
  18. 18.
    Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem 1982;257:5751–4.PubMedGoogle Scholar
  19. 19.
    Bast A, Haenen GRMM. Cytochrome P-450 and vitamin E free radical reductase: formation of and protection against free radicals. In: Crastes de Paulet A, Douste Blazy L, Paoletti R, eds. Free radicals, lipoproteins and membrane lipids. New York: Plenum Press (in press).Google Scholar
  20. 20.
    Davies KJA. Intracellular proteolytic systems may function as secondary anti-oxidant defences: an hypothesis. J Free Rad Biol Med 1986;2:155–73.Google Scholar
  21. 21.
    Haenen GRMM, Van Dansik P, Vermeulen NPE, Timmerman H, Bast A. The effect of hydrogen peroxide onβ-adrenoceptor function in the heart. Free Rad Res Commun 1988;4:243–9.Google Scholar
  22. 22.
    Nuytinck JKS, Goris RJA, Redl H, Schlag G, Van Munster PJJ. Posttraumatic complications and inflammatory mediators. Arch Surg 1986;121:866–90.Google Scholar
  23. 23.
    Nerlich ML, Seidel L, Regel L, Nerlich AK, Sturm AJ. Oxidative membrane damage in severe trauma. A clinical-experimental study. In: Streicher HJ, ed. Chirurgisches Forum. Berlin: Springer-Verlag, 1986.Google Scholar
  24. 24.
    Rhodes GR, Newell JC, Shah D, et al. Increased oxygen consumption accompanying increased oxygen delivery with hypertonic mannitol in ARDS. Surgery 1978;84:490–3.PubMedGoogle Scholar
  25. 25.
    Weigelt JA, Noctonn JF, Botman KR, Snyder WH. Early steroid therapy for respiratory failure. Arch Surg 1985;120:536–40.PubMedGoogle Scholar
  26. 26.
    Goris RJA, Boekholtz WKF, Van Bebber IPT, Nuytinck JKS, Schillings PHM. Multiple organ failure and sepsis without bacteria. An experimental model. Arch Surg 1986;121:897–901.PubMedGoogle Scholar
  27. 27.
    Van Bebber IPT, Boekholtz WKF, Goris RJA, et al. Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J Surg Res (in press).Google Scholar
  28. 28.
    Goris RJA, Kolkman WFA, Leenen LPH, Van Bebber IPT, Corstens FHM, Heerschap A. Symptomatologie van posttraumatische dystrophie [Symptomatology of posttraumatic dystrophy]. In: Het Medisch Jaar ‘88. Utrecht: Bohn, Scheltema & Holkema, 1988:165–77.Google Scholar
  29. 29.
    Sudeck P. Die zogenannte akute Knochenatrophie als Entzündungsvorgang. Chirurg 1942;15:449–57.Google Scholar
  30. 30.
    Goris RJA, Van Dongen LM, Winters HAH. Are toxic oxygen radicals involved in the pathogenesis of reflex sympathetic dystrophy? Free Rad Res Commun 1987;3:13–8.Google Scholar
  31. 31.
    Goris RJA. Oxygen radicals and sympathetic dystrophy. In: Dominioni L, Cuschieri A, eds. Report of the first ADSE Meeting. Pavia. 1987:34–36.Google Scholar
  32. 32.
    Brownlee M, Vlassara H, Cerami A. Non-enzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 1984;101:527–37.PubMedGoogle Scholar
  33. 33.
    Van Heyningen R. Formation of polyols by the lens of the rat with ‘sugar’-cataract. Nature 1959;184:194–5.Google Scholar
  34. 34.
    Kinoshita JH. Mechanism initiating cataract formation. Proctor Lecture Invest Ophthalmol Vis Sci 1974;13:713–24.Google Scholar
  35. 35.
    Kador PF, Akagi Y, Kinoshita JH. The effect of aldose reductase and its inhibition on sugar cataract formation. Metabolism 1986;35(Suppl 1):15–9.PubMedGoogle Scholar
  36. 36.
    Barnett PA, Gonzalez RG, Chylack Jr LT, Cheng HM. The effect of oxidation on sorbitol pathway kinetics. Diabetes 1986;35:426–32.PubMedGoogle Scholar
  37. 37.
    Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Biochem J 1988;256:205–12.PubMedGoogle Scholar
  38. 38.
    Kador PF, Kinoshita JN, Sharpless NE. Aldose reductase inhibitors. A potential new class of agents for the pharmacological control of certain diabetic complications. J Med Chem 1985;28:841–9.PubMedGoogle Scholar
  39. 39.
    Fujiwara Y, Kondo T, Murakami K, Kawakami Y. Decrease in the inhibition of lipid peroxidation by glutathione-dependent system in erythrocytes of non-insulin dependent diabetes. Klin Wochenschr 1989;67:336–41.PubMedGoogle Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1989

Authors and Affiliations

  • A. Bast
    • 1
  • R. J. A. Goris
    • 2
  1. 1.Department of Pharmacochemistry, Faculty of ChemistryFree UniversityHV AmsterdamThe Netherlands
  2. 2.Department of General SurgerySt. Radboud HospitalHB Nijmegen

Personalised recommendations