Pharmaceutisch Weekblad

, Volume 8, Issue 4, pp 209–222 | Cite as

The beta-adrenoceptor-adenylate cyclase complex

From model to biochemical reality
  • Ad P. Ijzerman
  • Henk Timmerman
Review Articles


Developments in the receptor concept have greatly influenced our current knowledge of the beta-adrenoceptor. The triad of pharmacology, organic chemistry and studies in structure-activity relationships is discussed along historical lines, as it has been and still is an impetus for progress in the biochemistry of ligand-receptor interactions. With respect to the beta-adrenoceptor complex these advances which have led to a model in which three protein structures are functionally interacting within the frame of the cell wall: the beta-adrenoceptor, the regulatory guanine nucleotide binding protein, and the enzyme adenylate cyclase, are reviewed.

Key words

Biochemistry Pharmacology Receptors, adrenergic, beta Review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dale HH. On some physiological actions of ergot. J Physiol (Lond) 1906;34:163–206.Google Scholar
  2. 2.
    Langley JN. On the reaction of cells and nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J Physiol (Lond) 1905;33:374–413.Google Scholar
  3. 3.
    Langley JN. On the physiology of the salivary secretion. J Physiol (Lond) 1878;1:339–69.Google Scholar
  4. 4.
    Fisher E. Einfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 1894;27:2985–93.Google Scholar
  5. 5.
    Guldberg CM, Waage P. Études sur les affinité's chimiques. Cited in: Guggenheim EA. More about the laws of reaction rates and of equilibrium. J Chem Educ 1956;33:545–6.Google Scholar
  6. 6.
    Henri V. Théorie générale de l'action de quelques diastases. CR Acad Sci (D) (Paris) 1902;135:916–32.Google Scholar
  7. 7.
    Michaelis L, Menten ML. Die Kinetik der Invertwirkung. Biochem Z 1913;49:333–70.Google Scholar
  8. 8.
    Briggs GE, Haldane JBS. A note on the kinetics of enzyme action. Biochem J 1925;19:338–9.Google Scholar
  9. 9.
    Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 1918;40:1361–403.CrossRefGoogle Scholar
  10. 10.
    Clark AJ. The reaction between acetylcholine and muscle cells. J Physiol (Lond) 1926;61:530–46.Google Scholar
  11. 11.
    Clark AJ. The mode of action of drugs on cells. London: Arnold Publishers, 1933.Google Scholar
  12. 12.
    Clark AJ. General Pharmacology. Heffter's Handbuch der experimentelle Pharmakologie. Vol. 4. Berlin: Springer-Verlag, 1937. (Reprinted in 1970 and 1973).Google Scholar
  13. 13.
    Gaddum JH. The action of adrenalin and ergotamine on the uterus of the rabbit. J Physiol (Lond) 1926;61:141–50.Google Scholar
  14. 14.
    Ravéntos J. Pharmacological actions of quaternary ammonium salts. Q J Exp Physiol 1937;26:361–74.Google Scholar
  15. 15.
    Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948;153:586–600.Google Scholar
  16. 16.
    Woodbury RA, Abreu BE. Influence of epinephrine upon the human gravid uterus. Am J Obstet Gynecol 1944;48:706–8.Google Scholar
  17. 17.
    Ariëns EJ, De Groot WM. Affinity and intrinsic activity in the theory of competitive inhibition, III. Homologous decamethonium derivatives and succinylcholine-esters. Arch Int Pharmacodyn Ther 1954;99:193–205.PubMedGoogle Scholar
  18. 18.
    Ariëns EJ, Simonis AM, De Groot WM. Affinity and intrinsic activity in the theory of competitive and non-competitive inhibition and an analysis of some forms of dualism in action. Arch Int Pharmacodyn Ther 1955;100:298–322.PubMedGoogle Scholar
  19. 19.
    Van Rossum JM. Cumulative dose-response curves. II. Technique for the making of dose-response curves on isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther 1963;143:299–330.PubMedGoogle Scholar
  20. 20.
    Ariëns EJ. Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems and theory. Arch Int Pharmacodyn Ther 1954;99:32–49.PubMedGoogle Scholar
  21. 21.
    Stephenson RP. A modification of receptor theory. Br J Pharmacol 1956;11:379–93.PubMedGoogle Scholar
  22. 22.
    Ariëns EJ. Receptor theory and structure-activity relationships. In: Harper NJ, Simmonds AB, eds. Advances in Drug Research. Vol. 3. London: Academic Press, 1966:235–85.Google Scholar
  23. 23.
    Furchgott RF. The pharmacology of vascular smooth muscle. Pharmacol Rev 1955;7:183–265.PubMedGoogle Scholar
  24. 24.
    Nickerson M. Receptor occupancy and tissue response. Nature (Lond) 1956;178:697–8.Google Scholar
  25. 25.
    Sastry BVR, Cheng HC. Dissociation constants ofd- andl-lactoylcholines and related compounds at cholinergic receptors. J Pharmacol Exp Ther 1972;180:326–39.PubMedGoogle Scholar
  26. 26.
    Furchgott RF, Bursztyn P. Comparison of dissociation constants and of relative efficacies of selected agonists acting on parasympathetic receptors. Ann NY Acad Sci 1967;144:882–99.Google Scholar
  27. 27.
    Krall JF, Barrett JD, Korenman SG. Coupling of beta-adrenoceptors in rat uterine smooth muscle. Biol Reprod 1981;24:859–66.PubMedGoogle Scholar
  28. 28.
    Furchgott RF. The use of beta-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper NJ, Simmonds AB, eds. Advances in Drug Research. Vol. 3. London: Academic Press 1966:21–55.Google Scholar
  29. 29.
    Ariens EJ, Van Rossum JM, Koopman PC. Receptorreserve and threshold phenomena. I. Theory and experiments with autonomic drugs tested on isolated organs. Arch Int Pharmacodyn Ther 1960;127:459–78.PubMedGoogle Scholar
  30. 30.
    Van Rossum JM, Ariëns EJ. Receptor-reserve ana threshold phenomena. II. Theories on drug action and a quantitative approach to spare receptors and threshold values. Arch Int Pharmacodyn Ther 1962;136:385–413.PubMedGoogle Scholar
  31. 31.
    Ruffolo RR Jr, Rosing EL, Waddell JE. Receptor interactions of imidazolines. I. Affinity and efficacy for alpha-adrenergic receptors in rat aorta. J Pharmacol Exp Ther 1979;209:429–36.PubMedGoogle Scholar
  32. 32.
    Powell CE, Slater IH. Blocking of inhibitory adrenergic receptors by a dichloro analog of isoproterenol. J Pharmacol Exp Ther 1958;122:480–8.PubMedGoogle Scholar
  33. 33.
    Moran NC, Perkins ME. Adrenergic block of the mammalian heart by a dichloro analogue of isoproterenol. J Pharmacol Exp Ther 1958;124:223–37.PubMedGoogle Scholar
  34. 34.
    Moran NC, Perkins ME. An evaluation of adrenergic blockade of the mammalian heart. J Pharmacol Exp Ther 1961;133:192–201.PubMedGoogle Scholar
  35. 35.
    Black JW, Stephenson JS. Pharmacology of a new adrenergic beta-receptor-blocking compound (nethalide). Lancet 1962;2:311–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Black JW, Crowther AF, Shanks RG, Smith LH, Dornhorst AC. A new adrenergic beta-receptor antagonist. Lancet 1964;1:1080–1.CrossRefGoogle Scholar
  37. 37.
    Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr. Differentiation of receptor systems activated by sympathomimetic amines. Nature (Lond) 1967;214:597–8.Google Scholar
  38. 38.
    Lands AM, Groblewski GE, Brown TG Jr. Comparison of the action of isoproterenol and several related compounds on blood pressure, heart and bronchioles. Arch Int Pharmacodyn Ther 1965;161:68–75.Google Scholar
  39. 39.
    Arnold A, McAuliff JP, Luduena FP, Brown TG Jr. Lands AM. Lipolysis and sympathomimetic amines [Abstract]. Fed Proc 1966;25:500.Google Scholar
  40. 40.
    Dunlop D, Shanks RG. Selective blockade of adrenoceptive beta-receptors in the heart. Br J Pharmacol 1968;32:201–18.PubMedGoogle Scholar
  41. 41.
    Brittain RT, Farmer JB, Jack D, Martin LE, Simpson WT. New class of selective stimulants of beta-adrenergic receptors. Nature (Lond) 1968;219:861–2.Google Scholar
  42. 42.
    Carlsson E, Åblad B, Brandstrøm A, Carlsson B. Differentiated blockade of the chronotropic effects of various adrenergic stimuli in the cat heart. Life Sci 1972;11:953–8.CrossRefGoogle Scholar
  43. 41.
    Harms HH, Zaagsma J, Van der Wal B. Betaadrenoceptor studies. III. On the beta-adrenoceptors in rat adipose tissue. Eur J Pharmacol 1974;25:87–91.CrossRefPubMedGoogle Scholar
  44. 44.
    De Yente J, Bast A, Van Bree L, Zaagsma J. Beta-adrenoceptor studies, VI. Further investigations on the hybrid nature of the rat adipocyte betaadrenoceptor. Eur J Pharmacol 1980;63:73–83.CrossRefPubMedGoogle Scholar
  45. 45.
    Arch JRS, Ainsworth AT, Cawthorne MA, et al. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature (Lond) 1982;309:163–5.CrossRefGoogle Scholar
  46. 46.
    Wilson C, Wilson S, Piercy V, Sennitt MV, Arch JRS. The rat lipolytic beta-adrenoceptor: studies using novel beta-adrenoceptor agonists. Eur J Pharmacol 1984;100:309–19.CrossRefPubMedGoogle Scholar
  47. 47.
    Koshland DE Jr. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 1958;44:98–104.Google Scholar
  48. 48.
    Belleau B. A molecular theory of drug action based on induced conformational perturbations of receptors. J Med Chem 1964;7:776–84.CrossRefGoogle Scholar
  49. 49.
    Paton WDM. A theory of drug action based on the rate of drug-receptor combination. Proc R Soc Lond [Biol] 1961;154:21–69.Google Scholar
  50. 50.
    Furchgott RF. Receptor mechanisms. Ann Rev Pharmacol 1964;4:21–50.CrossRefGoogle Scholar
  51. 51.
    Thron CD, Wand DR. The rate of action of atropine. J Pharmacol Exp Ther 1968;160:91–105.PubMedGoogle Scholar
  52. 52.
    Paton WDM, Rang HP. A kinetic approach to the mechanisms of drug action. In: Harper NJ, Simmonds AB, eds. Advances in Drug Research. Vol. 3. London: Academic Press 1966:57–80.Google Scholar
  53. 53.
    Rall TW, Sutherland EW. Formation of a cyclic adenosine ribonucleotide by tissue particles. J Biol Chem 1958;232:1065–76.PubMedGoogle Scholar
  54. 54.
    Sutherland EW, Robison GA. Role of cyclic-3′,5′AMP in responses to catecholamines and other hormones. Pharmacol Rev 1966;18:145–61.PubMedGoogle Scholar
  55. 55.
    Sutherland EW, Øye I, Butcher RW. The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent Prog Horm Res 1965;21:623–42.PubMedGoogle Scholar
  56. 56.
    Belleau B. Relationships between agonists, antagonists and receptor sites. In: Vane JR, Wolstenholme GEW, O'Connor M, eds. Ciba Foundation Symposium on Adrenergic Mechanisms. London, 1960. London: Churchill Livingstone, 1960:223–45.Google Scholar
  57. 57.
    Belleau B. Steric effects in catecholamine interactions with enzymes and receptors. Pharmacol Rev 1966;18: 131–40.PubMedGoogle Scholar
  58. 58.
    Bloom BM, Goldman IM. The nature of catecholamine-adenine mononucleotide interactions in adrenergic mechanisms. In: Harper NJ, Simmonds AB, eds. Advances in Drug Research. Vol. 3. London: Academic Press 1966:121–69.Google Scholar
  59. 59.
    Robison GA, Butcher RW, Sutherland EW. Adenylcyclase as an adrenergic receptor. Ann NY Acad Sci 1967;139:703–23.PubMedGoogle Scholar
  60. 60.
    Birnbaumer L, Pohl SL, Krans HMJ, Rodbell M. Actions of hormones on the adenyl cyclase system. Adv Biochem Psychopharmacol 1970;3:185–208.PubMedGoogle Scholar
  61. 61.
    Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. v. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem 1971;246:1877–82.PubMedGoogle Scholar
  62. 62.
    Cuatrecasas P. Membrane receptors. Ann Rev Biochem 1974;43:169–214.CrossRefPubMedGoogle Scholar
  63. 63.
    Singer SJ, Nicholson GL. The fluid mosaic model of the structure of cell membranes. Science 1972;175:720–31.PubMedGoogle Scholar
  64. 64.
    Singer SJ. The fluid mosaic model of membrane structure: some applications to ligand-receptor and cell-cell interactions. In: Bradshaw RA, Frazier WA, Merrell RC, et al., eds. Surface membrane receptors. New York: Plenum Press, 1976:1–24.Google Scholar
  65. 65.
    Cuatrecasas P. Hormone receptors — their function in cell membranes and some problems related to methodology. Adv Cyclic Nucleotide Res 1975;5:79–104.PubMedGoogle Scholar
  66. 66.
    Jacobs S, Cuatrecasas P. The mobile receptor hypothesis and ‘cooperativity’ of hormone binding. Application to insulin. Biochim Biophys Acta 1976;433:482–95.PubMedGoogle Scholar
  67. 67.
    Ariëns EJ, Beld AJ, Rodrigues de Miranda JF, Simonis AM. The pharmacon-receptor-effector concept. A basis for understanding the transmission of information in biological systems. In: O'Brien RD, ed. The Receptors. Vol. 1. New York: Plenum Press, 1979:33–91.Google Scholar
  68. 68.
    Changeux JP, Thiery J, Tung Y, Kittel C. The cooperativity of biological membranes. Proc Natl Acad Sci USA 1967;57:335–41.Google Scholar
  69. 69.
    Karlin A. The application of ‘a plausible model’ of allosteric proteins to the receptor for acetylcholine. J Theor Biol 1967;16:306–20.CrossRefPubMedGoogle Scholar
  70. 70.
    Thron CD. Analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 1973;9:1–9.PubMedGoogle Scholar
  71. 71.
    Lefkowitz RJ, Haber E. Fraction of the ventricular myocardium that has the specificity of the cardiac beta-adrenergic receptor. Proc Natl Acad Sci USA 1971;68:1773–7.PubMedGoogle Scholar
  72. 72.
    Cuatrecasas P, Tell GPE, Sica V, Parikh I, Chang KJ. Noradrenaline binding and the search for catecholamine receptors. Nature (Lond) 1974;247:92–7.Google Scholar
  73. 73.
    Aurbach GD, Fedak SA, Woodward CJ, Palmer JS, Hauser D, Troxler F. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site. Science 1974;186:1223–4.PubMedGoogle Scholar
  74. 74.
    Lefkowitz RJ, Mukherjec C, Coverstone M, Caron MG. Stereospecific [3H](-)alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase. Biochem Biophys Res Commun 1974;60:703–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Engel G, Hoyer D, Berthold R, Wagner H. (+,−)-[125Iodo]cyanopindolol, a new ligand for beta-adrenoceptors: identification and quantitation of subclasses of beta-adrenoceptors in guinea pig. Naunyn-Schmiedebergs Arch Pharmacol 1981;317:277–85.CrossRefPubMedGoogle Scholar
  76. 76.
    Barovsky K, Brooker G. (−) [125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells. J Cyclic Nucleotide Res 1980;6:297–307.PubMedGoogle Scholar
  77. 77.
    Staehelin M, Simons P. Rapid and reversible disappearance of beta-adrenergic cell surface receptors. EMBO J 1982;1:187–90.PubMedGoogle Scholar
  78. 78.
    Ross EM, Gilman AG. Biochemical properties of hormone-sensitive adenylate cyclase. Ann Rev Biochem 1980;49:533–64.CrossRefPubMedGoogle Scholar
  79. 79.
    Lefkowitz RJ, Caron MG, Michel T, Stadel JM. Mechanisms of hormone receptor-effector coupling: the beta-adrenergic receptor and adenylate cyclase. Fed Proc 1982;41:2664–70.PubMedGoogle Scholar
  80. 80.
    Vauquelin G, Geynet P, Hanoune J, Strosberg AD. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography. Proc Natl Acad Sci USA 1977;74:3710–4.PubMedGoogle Scholar
  81. 81.
    Caron MG, Srinivasan Y, Pitha J, Kociolek K, Lefkowitz RJ. Affinity. chromatography of the beta-adrenergic receptor. J Biol Chem 1979;254:2923–7.PubMedGoogle Scholar
  82. 82.
    Stiles GL, Strasser RH, Lavin TN, Jones LR, Caron MG, Lefkowitz RJ. The cardiac beta-adrenergic receptor. J Biol Chem 1983;258:8443–9.PubMedGoogle Scholar
  83. 83.
    Shorr RGL, Lefkowitz RJ, Caron MG. Purification of the beta-adrenergic receptor. Identification of the hormone binding subunit. J Biol Chem 1981;256:5820–6.PubMedGoogle Scholar
  84. 84.
    Shorr RGL, Strohsacker MW, Lavin TN, Lefkowitz RJ, Caron MG. The beta1-adrenergic receptor of the turkey erythrocyte: molecular heterogeneity revealed by purification and photo-affinity labelling. J Biol Chem 1982;257:12341–50.PubMedGoogle Scholar
  85. 85.
    Sibley DR, Peters JR, Nambi P, Caron MG, Lefkowitz RJ. Photo-affinity labelling of turkey erythrocyte betaadrenergic receptors: degradation of the M1 = 49,000 protein explains apparent heterogeneity. Biochem Biophys Res Commun 1984;119:458–64.CrossRefPubMedGoogle Scholar
  86. 86.
    Shorr RGL, Heald SL, Jeffs PW, et al. The betaadrenergic receptor: rapid purification and covalent labelling by photo-affinity crosslinking. Proc Natl Acad Sci USA 1982;79:2778–82.PubMedGoogle Scholar
  87. 87.
    Cerione RA, Codina J, Benovic JL, Lefkowitz RJ, Birnbaumer L, Caron MG. The mammalian beta2adrenergic receptor: reconstitution of functional interactions between pure receptor and pure stimulatory nucleotide binding protein of the adenylate cyclase system. Biochemistry 1984;23:4519–25.CrossRefPubMedGoogle Scholar
  88. 88.
    Stiles GL, Benovic JL, Caron MG, Lefkowitz RJ. Mammalian beta-adrenergic receptors. J Biol Chem 1984;259:8655–63.PubMedGoogle Scholar
  89. 89.
    Cushny AR. The action of optical isomers. III. Adrenalin. J Physiol (Lond) 1908;37:130–8.Google Scholar
  90. 90.
    Cushny AR. Biological relations of optically isomeric substances. Baltimore: Williams & Wilkins Co., 1926.Google Scholar
  91. 91.
    Von Euler US. Identification of sympathomimetic ergone in adrenergic nerves of cattle (Sympathin N) with laevo-noradrenaline. Acta Physiol [Scand] 1948;16:63–74.Google Scholar
  92. 92.
    Easson LH, Stedman E. Studies on the relationship between chemical constitution and physiological action, v. Molecular dissymmetry and physiological activity. Biochem J 1933;27:1257–66.Google Scholar
  93. 93.
    Ariëns EJ. Molecular Pharmacology. New York: Academic Press, 1964:244.Google Scholar
  94. 94.
    Blinks JR. Influence of beta-hydroxyl group on the inotropic and chronotropic activities of catecholamines. Pharmacologist 1904;6:176.Google Scholar
  95. 95.
    Morris TH, Kaumann AJ. Different steric characteristics of beta1- and beta2-adrenoceptors. Naunyn-Schmiedebergs Arch Pharmacol 1984;327:176–9.CrossRefPubMedGoogle Scholar
  96. 96.
    Asano T, Katada T, Gilman AG, Ross EM. Activation of the inhibitory GTP-binding protein of adenylate cyclase, Gi, by beta-adrenergic receptors in reconstituted phospholipid vesicles. J Biol Chem 1984;259:9351–4.PubMedGoogle Scholar
  97. 97.
    Pfeuffer T. GTP-binding proteins in membranes and the control of adenylate cyclase activity. J Biol Chem 1977;252:7224–34.PubMedGoogle Scholar
  98. 98.
    Ross EM, Howlett AC, Ferguson KM, Gilman AG. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem 1978;253:6401–12.PubMedGoogle Scholar
  99. 99.
    Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature (Lond) 1980;284:17–22.CrossRefGoogle Scholar
  100. 100.
    Northrup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci USA 1980;77:6516–20.PubMedGoogle Scholar
  101. 101.
    Hanski E, Sternweis PC, Northrup JK, Dromerick AW, Gilman AG. The regulatory component of adenylate cyclase. Purification and properties of the turkey erythrocyte protein. J Biol Chem 1981;256:12911–9.PubMedGoogle Scholar
  102. 102.
    Hanski E, Gilman AG. The guanine nucleotidebinding regulatory component of adenylate cyclase in human erythrocytes. J Cyclic Nucleotide Res 1982;8:323–36.PubMedGoogle Scholar
  103. 103.
    Northrup JK, Sternweis PC, Gilman AG. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution, activity and properties of the 35,000-dalton (beta) subunit. J Biol Chem 1983; 258:11361–8.PubMedGoogle Scholar
  104. 104.
    Northrup JK, Smigel MD, Sternweis PC, Gilman AG. The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (alpha) subunit. J Biol Chem 1983; 258:11369–76.PubMedGoogle Scholar
  105. 105.
    Hildebrandt JD, Codina J, Risinger R, Birnbaumer L. Identification of a gamma subunit associated with the adenylyl cyclase regulatory proteins Ns and Nj. J Biol Chem 1984;259:2039–42.PubMedGoogle Scholar
  106. 106.
    Bokoch GM, Katada T, Northrup JK, Hewlett EL, Gilman AG. Identification of the predominant substrate for ADP-ribosylation by islet activating proteins. J Biol Chem 1983;258:2072–5.PubMedGoogle Scholar
  107. 107.
    Manning DR, Gilman AG. The regulatory components of adenylate cyclase and transducin. A family of structurally homologous guanine nucleotide-binding proteins. J Biol Chem 1983;258:7059–63.PubMedGoogle Scholar
  108. 108.
    Katada T, Bokoch GM, Northrup JK, Ui M, Gilman AG. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Properties and function of the purified protein. J Biol Chem 1984;259:3568–77.PubMedGoogle Scholar
  109. 109.
    Katada T, Northup JK, Bokoch GM, Ui M, Gilman AG. The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J Biol Chem 1984;259:3578–85.PubMedGoogle Scholar
  110. 110.
    Jacobs KH, Schultz G. Occurrence of a hormonesensitive inhibitory coupling component of the adenylate cyclase in S49 lymphoma cyc variants. Proc Natl Acad Sci USA 1983;80:3899–902.PubMedGoogle Scholar
  111. 111.
    Katada T, Bokoch GM, Smigel MD, Ui M, Gilman AG. The inhibitory guanine-nucleotide binding regulatory component of adenylate cyclase. Subunit dissociation and the inhibition of adenylate cyclase in S49 lymphoma cyc and wild type membranes. J Biol Chem 1984;259:3586–95.PubMedGoogle Scholar
  112. 112.
    Stryer L, Hurley JB, Fung BKK. First stage of amplification in the cyclic-nucleotide cascade of vision. Curr Top Membrane Trans 1981;15:93–108.Google Scholar
  113. 113.
    Fung BKK. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem 1983;258:10495–502.PubMedGoogle Scholar
  114. 114.
    Ross EM. Physical separation of the catalytic unit and regulatory proteins of hepatic adenylate cyclase. J Biol Chem 1981;256:1949–53.PubMedGoogle Scholar
  115. 115.
    Drummond GI. Properties of the resolved catalytic unit of skeletal muscle adenylate cyclase. Arch Biochem Biophys 1984;235:427–37.CrossRefPubMedGoogle Scholar
  116. 116.
    Pfeuffer T, Metzger H. 7-O-Hemisuccinyl-deacetyl forskolin-Sepharose: a novel affinity support for purification of adenylate cyclase. FEBS Lett 1982;146:369–75.CrossRefGoogle Scholar
  117. 117.
    Pfeuffer T, Gaugler B, Metzger H. Isolation of homologous and heterologous complexes between catalytic and regulatory components of adenylate cyclase by forskolin-sepharose. FEBS Lett 1983;164:154–60.CrossRefPubMedGoogle Scholar
  118. 118.
    Pfeuffer E, Dreher RM, Metzger H, Pfeuffer T. Catalytic unit of adenylate cyclase: purification and identification by affinity crosslinking. Proc Natl Acad Sci USA 1985;82:3086–90.PubMedGoogle Scholar
  119. 119.
    Seamon KB, Daly JW. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem 1981; 256:9799–801.PubMedGoogle Scholar
  120. 120.
    Insel PA, Stengel D, Ferry N, Hanoune J. Regulation of adenylate cyclase of human platelet membranes by forskolin. J Biol Chem 1982;257:7485–90.PubMedGoogle Scholar
  121. 121.
    Houslay MD, Ellory JC, Smith Hesketh TR, Stein JM, Warren GD, Metcalfe JC. Exchange in partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent mobile receptor model. Biochem Biophys Acta 1977;467:208–19.PubMedGoogle Scholar
  122. 122.
    Andreasen TJ, Heideman W, Rosenberg GB, Storm DR. Photo-affinity labeling of brain adenylate cyclase preparations with azido [125I]iodocalmodulin. Biochemistry 1983;22:2757–62.CrossRefPubMedGoogle Scholar
  123. 123.
    Levitzki A. Activation and inhibition of adenylate cyclase by hormones: mechanistic aspects. TIPS 1982;3:203–7.Google Scholar
  124. 124.
    Arad H, Rosenbüsch JP, Levitzki A. Stimulatory GTP regulatory unit Ns and the catalytic unit of adenylate cyclase are tightly associated: mechanistic consequences. Proc Natl Acad Sci USA 1984;81:6579–83.PubMedGoogle Scholar
  125. 125.
    Lefkowitz RJ, DeLean A, Hofmann BB, et al. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors. Adv Cyclic Nucleotide Res 1981;14:145–61.PubMedGoogle Scholar
  126. 126.
    Gilman AG. Guanine nucleotide-binding regulatory proteins and dual control of adenylate cyclase. J Clin Invest 1984;73:1–4.PubMedGoogle Scholar
  127. 127.
    Sternweis PC, Gilman AG. Aluminium: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 1982;79:4888–91.PubMedGoogle Scholar
  128. 128.
    Ross EM. Phosphatidylcholine-promoted interaction of the catalytic and regulatory proteins of adenylate cyclase. J Biol Chem 1982:257-10751-8.Google Scholar
  129. 129.
    Cech SY, Broaddus WC, Maguire ME. Adenylate cyclase: the role of magnesium and other divalent cations. Mol Cell Biochem 1980;33:67–92.CrossRefPubMedGoogle Scholar
  130. 130.
    Garbers DL, Johnson RA. Metal and metal-ATP interactions with brain and cardiac adenylate cyclases. J Biol Chem 1975;250:8449–56.PubMedGoogle Scholar
  131. 131.
    Cech SY, Maguire ME. Magnesium regulation of the beta-receptor-adenylate cyclase complex. I. Effects of manganese on receptor binding and cyclase activation. Mol Pharmacol 1982;22:267–73.PubMedGoogle Scholar
  132. 132.
    Maguire ME. Magnesium regulation of the betareceptor-adenylate cyclase complex. II. Scandium as a magnesium antagonist. Mol Pharmacol 1982;22:274–80.PubMedGoogle Scholar
  133. 133.
    Cassel D, Sellinger Z. Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 1977;74:3307–11.PubMedGoogle Scholar
  134. 134.
    Johnson GL, Kaslow HR, Farfel Z, Bourne HR. Genetic analysis of hormone sensitive adenylate cyclase. Adv Cyclic Nucleotide Res 1980;13:2–38.Google Scholar
  135. 135.
    Kent RS, DeLean A, Lefkowitz RJ. A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modelling of ligand binding data. Mol Pharmacol 1980;17:14–23.PubMedGoogle Scholar
  136. 136.
    DeLean A, Hancock AA, Lefkowitz RJ. Validation and statistical analysis of a computer modelling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharmacol 1982;21:5–16.PubMedGoogle Scholar
  137. 137.
    DeLean A, Stadel J, Lefkowitz RJ. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980;255:7108–17.PubMedGoogle Scholar
  138. 138.
    Limbird E, Gill DM, Lefkowitz RJ. Agonist promoted coupling of the beta-adrenergic receptors with the guanine nucleotide regulatory protein of the adenylate cyclase. Proc Natl Acad Sci USA 1980;77:775–9.PubMedGoogle Scholar
  139. 139.
    Limbird E, Lefkowitz RJ. Agonist induced increase in apparent beta-adrenergic receptor size. Proc Natl Acad Sci USA 1978;75:228–32.PubMedGoogle Scholar
  140. 140.
    Weiland GA, Minneman KP, Molinoff PB. Fundamental difference between the molecular interactions of agonists and antagonists with the beta-adrenergic receptor. Nature (Lond) 1979;281:114–7.Google Scholar
  141. 141.
    Weiland GA, Minneman KP, Molinoff PB. Thermodynamics of agonist and antagonist interactions with mammalian beta-adrenergic receptors. Mol Pharmacol 1980;18:341–7.PubMedGoogle Scholar
  142. 142.
    Vauquelin G, Maguire ME. Inactivation of betaadrenergic receptors byN-ethylmaleimide in S49 lymphoma cells. Mol Pharmacol 1980;18:362–9.PubMedGoogle Scholar
  143. 143.
    Jacobsson B, Vauquelin G, Wesslau C, Smith U, Strosberg AD. Distinction between two subpopulations of beta1-adrenergic receptors in human adipose cells. Eur J Biochem 1981;114:349–54.CrossRefPubMedGoogle Scholar
  144. 144.
    Korner M, Gilon C, Schramm M. Locking of hormone in the beta-adrenergic receptor by attack on a sulfhydryl in an associated component. J Biol Chem 1982;257:3389–96.PubMedGoogle Scholar
  145. 145.
    Tolkovsky AM. The elucidation of some aspects of receptor function by the use of a kinetic approach. Curr Top Membrane Trans 1983;18:11–44.Google Scholar
  146. 146.
    Cerione RA, Strulovici B, Benovic JL, Lefkowitz RJ, Caron MG. The pure beta-adrenergic receptor: a single polypeptide confers catecholamine responsiveness to an adenylate cyclase system. Nature (Lond) 1983; 306:562–6.CrossRefGoogle Scholar
  147. 147.
    Cerione RA, Staniszewski C, Benovic JL, et al. Specificity of the functional interactions of the betaadrenergic receptor and rhodopsin with guanine nucleotide regulatory proteins reconstituted in phospholipid vesicles. J Biol Chem 1985;260:1493–500.PubMedGoogle Scholar
  148. 148.
    Asano T, Ross EM. Catecholamine-stimulated guanosine 5′-O-(3-thiotriphosphate) binding to the stimulatory GTP-binding protein of adenylate cyclase: kinetic analysis in reconstituted phospholipid vesicles. Biochemistry 1984;23:5467–71.CrossRefPubMedGoogle Scholar
  149. 149.
    Asano T, Pedersen SE, Scott CW, Ross EM. Reconstitution of catecholamine-stimulated binding of guanosine 5′-O-(3-thiotriphosphate) to the stimulatory GTP-binding protein of adenylate cyclase. Biochemistry 1984;23:5460–7.CrossRefPubMedGoogle Scholar
  150. 150.
    Cerione RA, Staniszewski C, Caron MG, Lefkowitz RJ, Codina J, Birnbaumer L. A role for Ni in the hormonal stimulation of adenylate cyclase. Nature (Lond) 1985;318:293–5.CrossRefGoogle Scholar
  151. 151.
    Codina J, Hildebrandt JD, Sekura RD et al. Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases: purification of the human erythrocyte proteins without the use of activating regulatory ligands. J Biol Chem 1984;259:5871–86.PubMedGoogle Scholar
  152. 152.
    Cassel D, Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 1976;452:538–51.PubMedGoogle Scholar
  153. 153.
    Pike LJ, Lefkowitz RJ. Activation and desensitization of beta-adrenergic receptor-coupled GTPase and adenylate cyclase of frog and turkey erythrocyte membranes. J Biol Chem 1980;255:6860–7.PubMedGoogle Scholar
  154. 154.
    Brandt DR, Asano T, Pedersen SE, Ross EM. Reconstitution of catecholamine stimulated guanosine triphosphatase activity. Biochemistry 1983;22:4357–62.CrossRefPubMedGoogle Scholar
  155. 155.
    Hirata F, Strittmatter J, Axelrod J. Beta-adrenergic receptor agonists increase phospholipid methylation, membrane fluidity, and beta-adrenergic receptor-adenylate cyclase coupling. Proc Natl Acad Sci USA 1979;76:368–72.PubMedGoogle Scholar
  156. 156.
    Harden TK. Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 1983;35:5–32.PubMedGoogle Scholar
  157. 157.
    Sibley DR, Lefkowitz RJ. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature (Lond) 1985;317:124–9.CrossRefGoogle Scholar
  158. 158.
    Dixon RAF, Kobilka BK, Strader DJ, et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature (Lond) 1986;321:75–9.Google Scholar

Copyright information

© Bohn, Scheltema & Holkema 1986

Authors and Affiliations

  • Ad P. Ijzerman
    • 1
  • Henk Timmerman
    • 2
  1. 1.Division of Medicinal ChemistryCenter for Bio-Pharmaceutical SciencesRA LeidenThe Netherlands
  2. 2.Department of PharmacochemistryVrije UniversiteitHV AmsterdamThe Netherlands

Personalised recommendations