Advertisement

Pharmaceutisch Weekblad

, Volume 9, Issue 1, pp 1–23 | Cite as

Penicillins and cephalosporins

Physicochemical properties and analysis in pharmaceutical and biological matrices
  • P. C. van Krimpen
  • W. P. van Bennekom
  • A. Bult
Review Articles

Abstract

Penicillins and cephalosporins belong to the most prescribed antibiotics. Despite the relatively extended knowledge of these drugs, the qualitative and quantitative analysis of the compounds still gives rise to many problems. These difficulties are due to the chemical instability of the common Β-lactam nucleus, the minor differences in chemical structures between the analogues, and the complex and relatively fast degradation of the compounds in aqueous solutions. In this review a compilation of the physicochemical properties, the degradation routes and methods for analysis of these substances in biological and other matrices is presented.

Key words

Cephalosporins Chemistry, physical Chromatography Drug stability Penicillins Polarography Spectrum analysis Structure-activity relationship Titrimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Documentatie en Informatiedienst KNMP. Informatorium Medicamentorum. 's-Gravenhage: Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie 1986:87–98, 109–25.Google Scholar
  2. 2.
    Morin RB, Gorman G, eds. Penicillins and cephalosporins. New York: Academic Press Inc., 1982. (Chemistry and biology of beta-lactam antibiotics. Vol. 1.)Google Scholar
  3. 3.
    Flynn EH, ed. Cephalosporins and penicillins. Chemistry and biology. New York: Academic Press, 1972.Google Scholar
  4. 4.
    Gregory GI, ed. Recent advantages in the chemistry of beta-lactam antibiotics. London: Royal Society of Chemistry, 1981.Google Scholar
  5. 5.
    Edwards D. Antimicrobial drug action. London: MacMillan Press Ltd., 1980.Google Scholar
  6. 6.
    Braendle H-P, Hof H. Die antibakterielle Wirkung der beta-Lactam-Antibiotika. Med Klin 1986;81:125–9.PubMedGoogle Scholar
  7. 7.
    Williams RAD, Kruk ZL. The biochemistry and pharmacology of antibacterial agents. London: Croom Helm Ltd., 1981.Google Scholar
  8. 8.
    Munch R, Luthy R, Siegenthaler W. Betalactamase inhibition by clavulanic acid and other inhibitors with beta-lactam structure. Theoretical aspects and clinical applications. In: Gialdoni Grassi G, Sabath LD, eds. New trends in antibiotics: research and therapy. Amsterdam: Elsevier/North Holland Biomedical Press, 1981:145–64.Google Scholar
  9. 9.
    Reynolds JEF, ed. Martindale. The Extra Pharmacopoeia. 28th ed. London: The Pharmaceutical Press, 1982.Google Scholar
  10. 10.
    Mandell GL, Sande MA. Antimicrobial agents. In: Gilman AG, Goodman LS, Rail TW, Murad F, eds. The Pharmacological Basis of Therapeutics. 7th ed. New York: Macmillan Publishing Company, 1985:1115–49.Google Scholar
  11. 11.
    Midvedt T. Penicillins, cephalosporins and tetracyclines. In: Dukes MNG, ed. Side Effects of Drugs Annual 10. Amsterdam: Elsevier Science Publishers BV, 1986:234–40.Google Scholar
  12. 12.
    Bundgaard H. Penicillin allergy. Kinetics of penicilloylation of serum albumins by various penicillins. Acta Pharm Suec 1977;14:391–402.PubMedGoogle Scholar
  13. 13.
    Page MI. The mechanisms of reactions of beta-lactam antibiotics. Acc Chem Res 1984;17:144–51.Google Scholar
  14. 14.
    Hou JP, Poole JW. Beta-lactam antibiotics: their physicochemical properties and biological activities in relation to structure. J Pharm Sci 1971;60:503–32.PubMedGoogle Scholar
  15. 15.
    Yamana T, Tsuji A. Comparative stability of cephalosporins in aqueous solution: kinetics and mechanisms of degradation. J Pharm Sci 1976;65:1563–74.PubMedGoogle Scholar
  16. 16.
    Bundgaard H. Polymerization of penicillins. III: Structural effects influencing rate of dimerization of amino-penicillins in aqueous solution. Acta Pharm Suec 1977;14:67–80.PubMedGoogle Scholar
  17. 17.
    Nishikawa J, Tori K. 3-Substituent effect and 3-methylene substituent effect on the structure-reactivity relationship of 7-beta-(acylamino)-3-cephem-4-carboxylic acid derivatives studies by carbon-13 and IR spectroscopies. J Med Chem 1984;27:1657–63.PubMedGoogle Scholar
  18. 18.
    Indelicato JM, Norvilas TT, Pfeiffer RR, Wheeler WJ, Wilham WL. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J Med Chem 1974;17:523–7.PubMedGoogle Scholar
  19. 19.
    Florey K, ed. Analytical Profiles of Drugs Substances. Vol. 1–14. New York: Academic Press, 1971–1985.Google Scholar
  20. 20.
    Morin RB, Jackson BG, Muller RA, Lavagnino ER, Scanlon WB, Andrews SL. Chemistry of cephalosporin antibiotics. xv. Transformation of penicillin sulfoxide. A synthesis of cephalosporin compounds. J Am Chem Soc 1969;91:1401–7.PubMedGoogle Scholar
  21. 21.
    Boyd DB. Substituent effects in cephalosporins as assessed by molecular orbital calculations, nuclear magnetic resonance and kinetics. J Med Chem 1983;26:1010–3.PubMedGoogle Scholar
  22. 22.
    Boyd DB. Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J Med Chem 1984;27:63–6.PubMedGoogle Scholar
  23. 23.
    Coene B, Schanck A, Dereppe J-M, Van Meerssche M. Substituent effects on reactivity and spectral parameters of cephalosporins. J Med Chem 1984;27;694–700.PubMedGoogle Scholar
  24. 24.
    Levine BB. Degradation of benzylpenicillin at pH 7.5 tod-benzylpenicilloic acid. Nature 1960;186:939–40.Google Scholar
  25. 25.
    Grant NH. Penicillin polypeptides and their relevance to allergenicity. In: Weinstein B, Lande S, eds. Peptides: chemistry and biochemistry. New York: Marcel Dekker Inc., 1970:487–98.Google Scholar
  26. 26.
    Bundgaard H. Chemical studies related to cephalosporin allergy. 1. Kinetics of aminolysis of cephalosporins and effect of C-3 substituents on beta-lactam reactivity. Arch Pharm Chemi [Sci] 1975;3:94–123.Google Scholar
  27. 27.
    Nakashima E, Tsuji A, Nakamura M, Yamana T. Physicochemical properties of amphoteric beta-lactam antibiotics. IV. First- and second-order degradations of cefaclor and cefatrizine in aqueous solution and kinetic interpretation of the intestinal absorption and degradation of the concentrated antibiotics. Chem Pharm Bull (Tokyo) 1985;33:2098–106.Google Scholar
  28. 28.
    Boyd DB. Elucidating the leaving group effect in the beta-lactam ring opening mechanism of cephalosporins. J Org Chem 1985;50:886–8.Google Scholar
  29. 29.
    Bird AE, Redrup CE. Mercurimetric assay of penicillins. Proc Anal Div Chem Soc 1977;14:285–8.Google Scholar
  30. 30.
    Davis AM, Page MI. Opening of the thiazolidine ring of penicillin derivatives. J Chem Soc Chem Commun 1985:1702–4.Google Scholar
  31. 31.
    Ghebret-Sellassie I, Hem SL, Knevel AM. Epimerization of benzylpenicilloic acid in alkaline media. J Pharm Sci 1984;73:125–8.PubMedGoogle Scholar
  32. 32.
    Haginaka J, Wakai J. Epimerization of benzylpenicilloate in alkaline aqueous solutions. Chem Pharm Bull (Tokyo) 1985;33:2605–8.Google Scholar
  33. 33.
    Page MI, Proctor Ph. Mechanism of beta-lactam ring opening in cephalosporins. J Am Chem Soc 1984;106:3820–5.CrossRefGoogle Scholar
  34. 34.
    Bradshaw J, Eardley S, Long AG. Cephalosporanic acids. Part VI. Action of primary and secondary aromatic amines on cephalosporanic acids. J Chem Soc [C] 1968:801–6.Google Scholar
  35. 35.
    Indelicato JM, Wilham WL. Effect of 6-alpha substitution in penicillins and 7-alpha substitution in cephalosporins upon beta-lactam reactivity. J Med Chem 1974;17:528–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Degelaen JP, Loukas SL, Feeney J, Roberts GCK, Burgen ASV. A nuclear magnetic resonance study of the degradation of penicillin G in acidic solution. J Chem Soc [Perkin] Trans II 1979:86–90.Google Scholar
  37. 37.
    Longridge JL. Penicillenic acid, the mechanism of the acid and base catalysed hydrolysis reactions. J Chem Soc [B] 1971:852–7.Google Scholar
  38. 38.
    Bontchev PR, Papazova P. Hydrolysis of cephalosporins in strongly acid medium. Pharmazie 1978;33:346–8.PubMedGoogle Scholar
  39. 39.
    Konecny J, Felber E, Gruner J. Kinetics of the hydrolysis of cephalosporin C. J Antibiot (Tokyo) 1973;26:135–41.Google Scholar
  40. 40.
    Fabre H, Hussam Eddine N, Berge G. Degradation kinetics in aqueous solution of cefotaxime sodium, a third-generation cephalosporin. J Pharm Sci 1984;73:611–8.PubMedGoogle Scholar
  41. 41.
    Barbhaiya RH, Turner P. Isolation and identification of the fluorescent degradation product of some betalactam antibiotics. J Pharm Pharmacol 1978;30:224–7.PubMedGoogle Scholar
  42. 42.
    Fogg AG, Fayad NM. Differential pulse polarographic study of the degradation of ampicillin. Anal Chim Acta 1980;113:91–6.CrossRefGoogle Scholar
  43. 43.
    Roets E, De Pourcq P, Toppet S, et al. Isolation and structure elucidation of ampicillin and amoxicillin oligomers. J Chromatogr 1984;303:117–29.CrossRefGoogle Scholar
  44. 44.
    Bundgaard H. Hydrolysis and intramolecular aminolysis of cephalexin and cephaloglycin in aqueous solution. Arch Pharm Chemi [Sci] 1976;4:25–43.Google Scholar
  45. 45.
    Bundgaard H. Chemical studies related to cephalosporin allergy. II. Competitive amine-catalyzed intra- and intermolecular aminolysis of cephalexin and cephaloglycin in aqueous solution. Acta Pharm Suec 1976;13:299–312.PubMedGoogle Scholar
  46. 46.
    Tsuji A, Nakashima E, Deguchi Y, et al. Degradation kinetics and mechanism of aminocephalosporins in aqueous solution: cefadroxil. J Pharm Sci 1981;70:1120–8.PubMedGoogle Scholar
  47. 47.
    Bundgaard H. Isolation and characterization of cephalexin degradation products formed in neutral aqueous solution. Arch Pharm Chemi [Sci] 1977;5:149–56.Google Scholar
  48. 48.
    Cohen AI, Funke PT, Puar MS. Alkaline degradation product of cephradine. J Pharm Sci 1973;62:1559–61.PubMedGoogle Scholar
  49. 49.
    Dinner A. Cephalosporin degradations. J Med Chem 1977;20:963–5.CrossRefPubMedGoogle Scholar
  50. 50.
    Fogg AG, Fayad NM, Burgess C. Differential pulse polarographic study of the degradation of cephalexin. Anal Chim Acta 1979;110:107–15.CrossRefGoogle Scholar
  51. 51.
    Fogg AG, Martin MJ. Differential pulse polarographic determination of degradation products of cephalosporins: comparison of the degradation of cephaloglycin in neutral solution with that of cephalexin. Analyst 1981;106:1213–7.CrossRefGoogle Scholar
  52. 52.
    Bundgaard H. Polymerization of penicillins: kinetics and mechanism of di- and polymerization of ampicillin in aqueous solution. Acta Pharm Suec 1976;13:9–26.PubMedGoogle Scholar
  53. 53.
    Bundgaard H. Polymerization of penicillins. II: Kinetics and mechanism of dimerization and self-catalyzed hydrolysis of amoxycillin in aqueous solution. Acta Pharm Suec 1977;14:47–66.PubMedGoogle Scholar
  54. 54.
    Takagi S, Nobuhara Y, Nakanishi Y. Formation of penicillin polymers and determination of molecular weight. J Chromatogr 1983;258:262–6.CrossRefGoogle Scholar
  55. 55.
    Ueno H, Nishikawa M, Muranka M, Horiuchi Y. High-speed gel filtration chromatography of polymers formed by beta-lactam antibiotics. J Chromatogr 1981;207:425–9.CrossRefGoogle Scholar
  56. 56.
    Kuchinskas EJ, Levy GN. Comparative stabilities of ampicillin and hetacillin in aqueous solution. J Pharm Sci 1977;61:727–9.Google Scholar
  57. 57.
    Tsuji A, Nakashima E, Nishide K, Deguchi Y, Hamano S, Yamana T. Physicochemical properties of amphoteric beta-lactam antibiotics. III. Stability, solubility and dissolution behaviour of cefatrizine and cefadroxil as a function of pH. Chem Pharm Bull (Tokyo) 1983;31:4057–69.Google Scholar
  58. 58.
    Yamana T, Tsuji A, Kanayama K, Nakano O. Comparative stabilities of cephalosporins in aqueous solutions. J Antibiot (Tokyo) 1974:27:1000–2.Google Scholar
  59. 59.
    Fujita T, Koshiro A. Kinetics and mechanism of the degradation and epimerization of sodium cefsulodin in aqueous solution. Chem Pharm Bull (Tokyo) 1984;32:3651–61.Google Scholar
  60. 60.
    Hashimoto N, Tasaki T, Tanaka H. Degradation and epimerization kinetics of moxalactam in aqueous solution. J Pharm Sci 1984:73:369–73.PubMedGoogle Scholar
  61. 61.
    Kaneniwa N, Otsuka M. The interaction between water and cephalexin in the crystalline and noncrystalline states. Chem Pharm Bull (Tokyo) 1984;32:4551–9.Google Scholar
  62. 62.
    Attwood D, Agarwal SP. Light scattering studies on micelle formation by some penicillins in aqueous solution. J Pharm Pharmacol 1984;36:563–4.PubMedGoogle Scholar
  63. 63.
    Jusko WJ. Fluorimetric analysis of ampicillin in biological fluids. J Pharm Sci 1971;60:728–32.PubMedGoogle Scholar
  64. 64.
    Yu ABC, Nightingale CH, Flanagan DR. Rapid sensitive fluorimetric analysis of cephalosporin antibiotics. J Pharm Sci 1977;66:213–6.PubMedGoogle Scholar
  65. 65.
    Kusnir J, Barna K. Fluorimetric determination of some basic antibiotics at very low concentrations. Z Anal Chem 1974;271:288.CrossRefGoogle Scholar
  66. 66.
    Baker WL. Application of the fluorescamine reaction with 6-aminopenicillanic acid to estimation and detection of penicillin acylase activity. Antimicrob Agents Chemother 1983;23:26–30.PubMedGoogle Scholar
  67. 67.
    Baker WL. A sensitive enzymic assay for benzylpenicillin. J Appl Bacteriol 1985:59:347–52.PubMedGoogle Scholar
  68. 68.
    Mori I, Fujita Y, Fujita K, et al. Determination of penicillins with mercurochrome. Chem Pharm Bull (Tokyo) 1985;33:4629–32.Google Scholar
  69. 69.
    Briguglio GT, Lau-Cam CA. Separation and identification of nine penicillins by reversed phase liquid chromatography. J Assoc Off Anal Chem 1984:67:228–31.PubMedGoogle Scholar
  70. 70.
    Smith JWG, De Grey GE, Patel VJ. The spectrophotometric determination of ampicillin. Analyst 1967;92:247–52.CrossRefPubMedGoogle Scholar
  71. 71.
    Anonymous. British Pharmacopoeia 1973. London: Her Majesty's Stationery Office, 1973.Google Scholar
  72. 72.
    Bundgaard H, Ilver K. A new spectrophotometric method for the determination of penicillins. J Pharm Pharmacol 1972:24:7904.Google Scholar
  73. 73.
    Bundgaard H. Spectrophotometric determination of ampicillin sodium in the presence of its degradation and polymerization products. J Pharm Pharmacol 1974;26:385–92.PubMedGoogle Scholar
  74. 74.
    Tutt DE, Schwartz MA. Spectrophotometric assay of ampicillin-involving initial benzoylation of the side chain alpha-aminogroup. Anal Chem 1971:43:338–42.CrossRefPubMedGoogle Scholar
  75. 75.
    Haginaka J, Wakai J, Yasuda H, Uno T. Spectrophotometric assay of penicillins by reaction with 1,2,4-triazole and mercury(II) chloride. Anal Sci 1985;1:73–6.Google Scholar
  76. 76.
    Buur A, Bundgaard H. A specific spectrophotometric assay for ampicillins and other aminopenicillins based on zinc ion-catalyzed reactions with aminoalcohols. Arch Pharm Chemi [Sci] 1983:11:91–9.Google Scholar
  77. 77.
    Holl WW, O'Brien M, Filan J, et al. Automated spectrophotometric assay of cephazolin. J Pharm Sci 1975;64:1232–4.PubMedGoogle Scholar
  78. 78.
    Papazova P, Bontchev PR, Kacarova M. New spectrophotometric method for determination of cephazolin. Talanta 1983:30:51–3.CrossRefGoogle Scholar
  79. 79.
    Rogic D, Mandic Z. Spectrophotometric determination of cephalexin. Acta Pharm Jugosl 1984;34:51–7.Google Scholar
  80. 80.
    Ford JH. Hydroxylamine method for determining penicillins. Anal Chem 1947;19:1004–6.CrossRefGoogle Scholar
  81. 81.
    Boxer GE, Everett PM. Colorimetric determination of benzylpenicillin. Anal Chem 1949;21:670–3.CrossRefGoogle Scholar
  82. 82.
    Niedermayer AO, Russo-Alesi FM, Lendzian CA, Kelly JM. Automated system for continuous determination of penicillin in fermentation media using hydroxylamine reagent. Anal Chem 1960;32:664–6.CrossRefGoogle Scholar
  83. 83.
    Bass VC, Yoe JH. Hydroxamic acids as colorimetric reagents. Talanta 1966:13:735–44.CrossRefGoogle Scholar
  84. 84.
    Notari RE, Munson JW. Hydroxamic acids. I: factors affecting the stability of the hydroxamic acid-iron complex. J Pharm Sci 1969;58:1060–4.PubMedGoogle Scholar
  85. 85.
    Kulo AE. Automated system for determination of cephalosporins and penicillins using hydroxylamine reagent. Farm Notisbl 1976;1:1–7.Google Scholar
  86. 86.
    Mays DL, Bangert FK, Cantrell WC, Evans WG. Hydroxylamine determination of cephalosporins. Anal Chem 1975;47:2229–34.CrossRefPubMedGoogle Scholar
  87. 87.
    Zinner G, Ketz EU. über die Farbreaktion von HydroxamsÄuren mit Eisen(III)-chlorid. Pharm Ztg 1976;121:910–1.Google Scholar
  88. 88.
    Le Moigne B, Barthes D, Fourtillan JB, Hazane C. La réaction de formation des hydroxamates ferriques. Adaptation autoanalytique appliquée à l'étude des bèta-lactamines et bèta-lactamases. Ann Pharm Fr 1978;36:381–90.PubMedGoogle Scholar
  89. 89.
    Lin S-L, Sutton VJ, Quraishi M. Equivalence of microbiological and hydroxylamine methods of analysis for ampicillin dosage forms. J Assoc Off Anal Chem 1979;62:989–97.PubMedGoogle Scholar
  90. 90.
    Bartos J. Colorimetric determination of organic compounds by formation of hydroxamic acids. Talanta 1980;27:583–90.CrossRefGoogle Scholar
  91. 91.
    Munson JW, Papadimitriou P, DeLuca PP. Colorimetric determination of penicillins and related compoundsinintravenoussolutionbynickel(II)-catalyzedhydroxamic acid formation. J Pharm Sci 1979;68:1333–5.PubMedGoogle Scholar
  92. 92.
    Anonymous. Nederlandse Farmacopee. Ed. IX. 's-Gravenhage: Staatsuitgeverij, 1983.Google Scholar
  93. 93.
    Anonymous. European Pharmacopoeia, 2nd ed. Sainte-Ruffine: Maisonneuve S.A., 1980.Google Scholar
  94. 94.
    Anonymous. British Pharmacopoeia 1980. Vol. I and II. London: Her Majesty's Stationery Office, 1980.Google Scholar
  95. 95.
    Anonymous. The United States Pharmacopeia. 21st Revision and Supplements 1–3. Rockville: United States Pharmacopeial Convention Inc., 1984.Google Scholar
  96. 96.
    Heintz B, Kruger M. Beta-lactam Antibiotika: Quecksilbertitration oder Hydroxamatmethode? Dtsch Apoth Ztg 1985;125:2594–602.Google Scholar
  97. 97.
    Thimme Gowda A, Made Gowda NM, Sanke Gowda H, Rangappa KS. Application of Azure C for the extractive spectrophotometric determination of microgram amounts of penicillin. J Pharmacol Methods 1985;13:275–80.CrossRefPubMedGoogle Scholar
  98. 98.
    Singh MP, Basu N, Roy DK, Mandal SK. A colorimetric method for quick identification and estimation of penicillins. Indian J Exp Biol 1984;22:39–41.PubMedGoogle Scholar
  99. 99.
    Amer MM, El Bardicy MG, Rucker G. Penicillins — a photometric method for their determination. Krankenhauspharmazie 1983;4:255–7 [from Chem Abstr 1983;99:2000583y].Google Scholar
  100. 100.
    Kirschbaum J. Colorimetric determination of cephradine, a cephalosporin antibiotic. J Pharm Sci 1974;63:923–5.Google Scholar
  101. 101.
    Abdalla MA, Fogg AG, Burgess C. Selective spectrophotometric determination of cephalosporins by alkaline degradation to hydrogen sulphide and formation of methylene blue. Analyst 1982;107:213–7.CrossRefGoogle Scholar
  102. 102.
    Abdalla MA, Fogg AG, Baber JG, Burgess C. Airsegmented continuous-flow visible spectrophotometric determination of cephalosporins in drug formulations by alkaline degradation to hydrogen sulphide and formation of methylene blue and determination of sulphide-producing impurities including cephalosporins in penicillins samples. Analyst 1983;108:53–7.CrossRefPubMedGoogle Scholar
  103. 103.
    Marini D. Alkaline hydrolysis of cefadroxil and sodium cefotaxime and their spectrophotometric determination by methylene blue formation. Boll Chim Farm 1982;121:658–64 [from Chem Abstr 1983;99:10938V].Google Scholar
  104. 104.
    Abdel-Khalek MM, Mahrous MS. Use of ammonium molybdate in the colorimetric assay of cephalosporins. Talanta 1984;31:635–7.CrossRefGoogle Scholar
  105. 105.
    Abdel-Khalek MM, Mahrous MS. Spectrophotometric determination of tetracyclines and cephalosporins with ammonium vanadate. Talanta 1983;30:792–4.CrossRefGoogle Scholar
  106. 106.
    Fogg AG, Abdalla MA. Visible spectrophotometric determination of cephalosporins and penicillins by indophenol derivatization with and without alkaline degradation to ammonia. J Pharm Biomed Anal 1985;3:315–21.CrossRefGoogle Scholar
  107. 107.
    Papazova P, Bontchev PR, Kacarova M. Photometric extraction method for determination of cephalexin. Mikrochimica Acta 1976;(II): 185–94.CrossRefGoogle Scholar
  108. 108.
    Papazova P, Bontchev PR, Kacarova M. Photometric extraction method for determination of cephalothin. Pharmazie 1977;32:486–8.PubMedGoogle Scholar
  109. 109.
    Mahrous MS, Abdel-Khalek MM. Spectrophotometric determination of certain cephalosporins with ninhydrin. Analyst 1984;119:611–3.CrossRefGoogle Scholar
  110. 110.
    Hughes DW, Vilim A, Wilson WL. Chemical and physical analysis of antibiotics. Part II. Can J Pharm Sci 1976;11:97–108.Google Scholar
  111. 111.
    Ibrahim SE. Application of NMR spectrometry in quantitative analysis of cloxacillin in some pharmaceutical preparations. Spectrosc Lett 1985;18:267–72 [from Anal Abstr 1986;48:168,2E23].Google Scholar
  112. 112.
    Thorpe CW, Johnson RL. Analysis of penicillic acid by GLC. J Assoc Off Anal Chem 1974;57:861–5.PubMedGoogle Scholar
  113. 113.
    Fujimoto Y, Suzuki T, Hoshino Y. Determination of penicillic acid and patulin by gas-liquid chromatography with an electron-capture detector. J Chromatogr 1975;105:99–106.CrossRefPubMedGoogle Scholar
  114. 114.
    Jacobs GP. Gamma-radiolysis of sodium ampicillin and its esters. Int J Appl Radiat Isot 1984;35:1023–7.CrossRefGoogle Scholar
  115. 115.
    Aboul Khier A, Blaschke G, EI Sadek M. Spectrodensitometric determination of some penicillin derivatives. Anal Lett 1984;17:1667–75.Google Scholar
  116. 116.
    Sykes RB, Wells JS. Screening for beta-lactam antibiotics in nature. J Antibiot (Tokyo) 1985;38:119–21.Google Scholar
  117. 117.
    Hendrickx S, Roets E, Hoogmartens J, Vanderhaeghe H. Identification of penicillins by TLC. J Chromatogr 1984;291:211–8.CrossRefGoogle Scholar
  118. 118.
    Fabre H, Blanchin M-D, Lerner D, Mandrou B. Determination of cephalosporins utilising thin-layer chromatography with fluorescamine detection. Analyst 1985;110:775–8.CrossRefPubMedGoogle Scholar
  119. 119.
    Tortolani G, Mazza M. The chromatography of antibiotics on SP-Sephadex. J Chromatogr 1973;86:139–44.CrossRefPubMedGoogle Scholar
  120. 120.
    Tortolani G, Romagnoli E. Chromatography of cephalosporins on DEAE-Sephadex. J Chromatogr 1976;120:149–53.CrossRefPubMedGoogle Scholar
  121. 121.
    Gehle RD, Schugerl K. Penicillin recovery from aqueous solutions by continuous foam flotation. Appl Microbiol Biotechnol 1984;19:373–5.CrossRefGoogle Scholar
  122. 122.
    Miners JO. The analysis of penicillins in biological fluids and pharmaceutical preparations by high-performance liquid chromatography: a review. J Liq Chromatogr 1985;8:2827–43.Google Scholar
  123. 123.
    Matlin SA, Chan L. Preparative HPLC. Part 2. Purification of beta-lactam derivatives using laboratory-assembled equipment. J High Res Chrom Chrom Commun 1985;8:23–7.CrossRefGoogle Scholar
  124. 124.
    Cantwell AM, Calderone R, Sienko M. Process scale-up of a beta-lactam antibiotic purification by highperformance liquid chromatography. J Chromatogr 1984;316:133–49.CrossRefGoogle Scholar
  125. 125.
    Lauback RG, Rice JJ, Bleiberg B, Muhammad N, Hanna SA. Specific high-performance liquid Chromatographic determination of ampicillin in bulks, injectables, capsules and oral suspensions by RP-ion pair chromatography. J Liq Chromatogr 1984;7:1243–65.Google Scholar
  126. 126.
    Knox JH, Jurand J. Mechanism of zwitterion pair chromatography. Part II. Ampicillin, lysergic acid, tryptophan and other solutes. J Chromatogr 1981;218:355–63.CrossRefGoogle Scholar
  127. 127.
    Fong GWK, Martin DT, Johnson RN, Kho BT. Determination of degradation products and impurities of amoxicillin capsules using ternary gradient elution HPLC. J Chromatogr 1984;298:459–72.CrossRefPubMedGoogle Scholar
  128. 128.
    De Pourcq P, Hoebus J, Roets E, Hoogmartens J, Vanderhaeghe H. Quantitative determination of amoxicillin and its decomposition products by high-performance liquid chromatography. J Chromatogr 1985;321:441–9.CrossRefPubMedGoogle Scholar
  129. 129.
    Haginaka J, Wakai J. Liquid Chromatographic determination of penicillins by postcolumn alkaline degradation. Anal Chem 1985;57:1568–71.CrossRefPubMedGoogle Scholar
  130. 130.
    Haginaka J, Wakai J. Liquid Chromatographic determination of penicillins by postcolumn degradation with sodium hypochlorite. Anal Chem 1986;58:1896–8.CrossRefPubMedGoogle Scholar
  131. 131.
    Brooks MA, Hackman MR, Mazzo DJ. Determination of amoxicillin by high-performance liquid chromatography with amperometric detection. J Chromatogr 1981:210:531–5.CrossRefGoogle Scholar
  132. 132.
    Rogers ME, Adlard MW, Saunders G, Holt G. Derivatization techniques for HPLC-analysis of betalactams. J Chromatogr 1984:297:385–91.CrossRefGoogle Scholar
  133. 133.
    Aboul Khier A, Blaschke G, El Sadek M. Determination of some penicillin derivatives using high performance liquid chromatography. Anal Lett 1984;17:1659–66.Google Scholar
  134. 134.
    Rogers ME, Adlard MW, Saunders G, Holt G. Highperformance liquid Chromatographic determination of penicillins following derivatization to mercury-stabilized penicillenic acids. J Liq Chromatogr 1983:6:2019–31.Google Scholar
  135. 135.
    Das Gupta V, Shah KA, De la Torre M. Stability of ampicillin sodium and penicillin G potassium solutions using high-pressure liquid chromatography. Can J Pharm Sci 1981:16:615 [from Chem Abstr 1981; 96:129678p].Google Scholar
  136. 136.
    Crombez E, Van den Bossche W, De Moerloose P. Separation of some cephalosporin derivatives by ion-pair RP-HPLC. J Chromatogr 1979;169:343–50.CrossRefPubMedGoogle Scholar
  137. 137.
    Elrod Jr. L, White LB, Wimer DC, Cox RD. Determination of cefsulodin sodium [d(−)-SCE 129] by HPLC. J Chromatogr 1982;237:515–21.CrossRefGoogle Scholar
  138. 135.
    Wouters I, Hendrickx S, Roets E, Hoogmartens J, Vanderhaeghe H. Selectivity of reversed-phase packing materials in HPLC of cephalosporins. J Chromatogr 1984;291:59–80.CrossRefGoogle Scholar
  139. 139.
    Nygard G, Wahba Khalil SK. An isocratic HPLC method for the determination of cephalosporins in plasma. J Liq Chromatogr 1984:7:1461–75.Google Scholar
  140. 140.
    Rogers ME, Adlard MW, Saunders G, Holt G. HPLC determination of beta-lactam antibiotics, using fluorescence detection following post-column derivatization. J Chromatogr 1983:257:91–100.CrossRefGoogle Scholar
  141. 141.
    Siegerman H. Polarography of antibiotics and antibacterial agents. In: Bard AJ, ed. Electroanalytical Chemistry. Vol. II. New York: Marcel Dekker Inc., 1979:291–343.Google Scholar
  142. 142.
    Selavka CM, Krull IS, Bratin K. Analysis for penicillins and cefoperazone by HPLC-photolysis-electrochemical detection (HPLC-hv-EC). J Pharm Biomed Anal 1986;4:83–93.CrossRefGoogle Scholar
  143. 143.
    Alicino JF. Iodometric method for the assay of penicillin preparations. Ind Eng Chem Anal Ed 1946:18:619–20.CrossRefGoogle Scholar
  144. 144.
    Körbl J. Merkurimetrische Bestimmung der natürlichen und halbsynthetischen Penicilline und einiger ihrer Degradationsprodukte [Abstract]. Congress Fédération Internationale Pharmaceutique, Stockholm, 3–8 September 1973.Google Scholar
  145. 145.
    Paál T, Molnar M. Selective determination of the penicillin-structure by the mercurimetric method. Gyogyszereszet 1976;20:8–13.Google Scholar
  146. 146.
    Forsman U, Karlberg B. Titration of 6-APA with mercury(II) solution. Anal Chim Acta 1976;86:87–91.CrossRefPubMedGoogle Scholar
  147. 147.
    Karlberg B, Forsman U. The determination of penicillins by titrations with mercury(II) solution. Anal Chim Acta 1976;83:309–16.CrossRefPubMedGoogle Scholar
  148. 148.
    Bird AE, Redrup CE. Mercurimetric assay of penicillins. Proc Anal Div Chem Soc 1977;14:285–8.CrossRefGoogle Scholar
  149. 149.
    Pospisilova B, Simkova M, Kubes J. Mercurimetric determination of penicillins. II. Titration of natural and synthetic penicillins in acetate buffer medium. Cesk Farm 1985;34:56–61.Google Scholar
  150. 150.
    Kószegi-Szalai H, Paál T, Juhasz-Fázekas E. A novel version and the reaction mechanism of the mercurimetric determination of penicillins. Acta Pharm Hung 1985;55:266–76 [from Chem Abstr 1986;104:56504a].PubMedGoogle Scholar
  151. 151.
    Doskocil J, Parizkova H. Conductometrische Titration des Penicillins. Pharmazie 1956:11:732–5.PubMedGoogle Scholar
  152. 152.
    Dobiasovsky J, Zyka J. Analytical studies of argentometric determination of penicillin. I. Cesk Farm 1978;27:253–7 [from Electroanal Abstr 1979;17:1328].PubMedGoogle Scholar
  153. 153.
    Dobiasovsky J, Zyka J. Analytical studies of argentometric determination of penicillin. II. Explanation of the course of the potentiometric titration curve. Cesk Farm 1978;27:293–6 [from Electroanal Abstr 1979; 17:1329].PubMedGoogle Scholar
  154. 154.
    Grime JK, Tan B. Direct titration of antibiotics with iodate solution. Part I: titration of some selected penicillins. Anal Chim Acta 1979;105:361–8.CrossRefGoogle Scholar
  155. 155.
    Alicino JF.N-Bromosuccinimide assay of penicillins and cephalosporins. J Pharm Sci 1976;65:300–1.PubMedGoogle Scholar
  156. 156.
    Rizk M, Walash MI, Abou-Ouf AA, Belal F. Evaluation of certain Pharmaceuticals with dibromohydantoin. Part v: Determination of penicillins. Anal Lett [B] 1981;14:1407–17.Google Scholar
  157. 157.
    Sikorska-Tomicka H. Titrimetric determination of thiolactams with ceric sulphate. Chemia Analityczna 1984;29:93–6.Google Scholar
  158. 158.
    Hassan SM, Zaki MTM, Eldesouki MH. Determination of penicillins by desulphurization with lead and EDTA titration. Talanta 1979;26:91–5.CrossRefGoogle Scholar
  159. 159.
    Okada S, Hattori K, Takano T. An iodometric assay of some derivatives of 7-aminocephalosporanic acid. Bull Chem Soc Jpn 1965;38:2186–7.PubMedGoogle Scholar
  160. 160.
    Frantz BM. Iodometric and spectrophotometric assays for cephradine after its hydrolysis with a beta-lactamase. J Pharm Sci 1976;65:887–91.PubMedGoogle Scholar
  161. 161.
    Körbl J, Pospisilova B. Mercurimetric determination of cephalosporins. Cesk Farm 1983;32:6–11.PubMedGoogle Scholar
  162. 162.
    Grime JK, Tan B. Direct titration of antibiotics with íodate solution. Part II: Some selected cephalosporins. Anal Chim Acta 1979;105:369–74.CrossRefGoogle Scholar
  163. 163.
    Fogg AG, Abdalla MA, Henriques HP. Titrimetric determination of the yield of sulphide formed by alkaline degradation of cephalosporins. Analyst 1982;107:449–52.CrossRefGoogle Scholar
  164. 164.
    Jemal M, Knevel AM. Polarographic behaviour of benzylpenicillenic acid. Anal Chem 1978;50:1917–20.CrossRefGoogle Scholar
  165. 165.
    Forsman U, Karlsson A. Direct current and differential pulse polarographic behaviour of benzylpenicilloic acid. Anal Chim Acta 1981;128:135–9.CrossRefGoogle Scholar
  166. 166.
    Forsman U, Karlsson A. Polarographic determination of penicilloic acid in penicillin preparations with a flow-injection system. Anal Chim Acta 1982;139:133–42.CrossRefGoogle Scholar
  167. 167.
    Squella JA, Nunez-Vergara LJ. Polarographic determination of ampicillin in capsules and tablets. Talanta 1979;26:1039–40.CrossRefGoogle Scholar
  168. 168.
    Squella JA, Nunez-Vergara LJ, Aros M. DC Polarographic and spectrophotometric determination of ampicillin capsules. J Assoc off Anal Chem 1980;63:1049–51.PubMedGoogle Scholar
  169. 169.
    Nunez-Vergara LJ, Daza R, Zanocco A, Squella JA. An electroactive metabolite from amoxycillin. Bioelectrochem Bioenerg 1983;11:417–24.CrossRefGoogle Scholar
  170. 170.
    Squella JA, Nunez-Vergara LJ. Anodic polarographic behaviour of hydrolyzed penicillin V. Anal Lett 1982:15:1505–13.Google Scholar
  171. 171.
    Squella JA, Silva MM, Nunez-Vergara LJ. Anodic polarographic determination of flucloxacillin. Talanta 1981;28:855–6.CrossRefGoogle Scholar
  172. 172.
    Rizk M, Walash MI, Abou-Ouf AA, Belal F. Polarographic behaviour and determination of penicillins after bromometric oxidation. Pharm Weekbl [Sci] 1984;6:114–7.Google Scholar
  173. 173.
    Squella JA, Nunez-Vergara LJ. Electrochemical study of some penicillin antibiotics by rapid AC polarography. J Electroanal Chem 1981;130:361–6.CrossRefGoogle Scholar
  174. 174.
    Forsman U. Cathodic stripping voltammetric determination of trace amount of penicillins. Anal Chim Acta 1983;146:71–86.CrossRefGoogle Scholar
  175. 175.
    Dusinsky G, Antolik P. Oscillographic polarography as a method for continuous measurements of inactivation of penicillins by penicillinase. Nature 1965;206:196–7.PubMedGoogle Scholar
  176. 176.
    Forsman U. Coulometric titration of penicillins and penicillamine with mercury(II). Anal Chim Acta 1977;93:153–9.CrossRefPubMedGoogle Scholar
  177. 177.
    Papariello GJ, Mukherji AK, Shearer CM. A penicillin selective electrode. Anal Chem 1973;45:790–2.CrossRefPubMedGoogle Scholar
  178. 178.
    Caras S, Janata J. Field effect transistor sensitive to penicillin. Anal.Chem 1980;52:1935–7.CrossRefGoogle Scholar
  179. 179.
    Caras SD, Janata J. pH-Based enzyme potentiometric sensors. Part 3. Penicillin-sensitive field effect transistors. Anal Chem 1985;17:1924–5.CrossRefGoogle Scholar
  180. 180.
    Kulys J, Gureviciene V, Laurinavicius V. Analytical systems based on immobilized enzymes. II. Penicillin enzyme electrodes. Liet TSR Mokslu Akad Darb [C] 1981:171–8 [from Anal Abstr 1982;43:4J119].Google Scholar
  181. 181.
    Jones IF, Page JE, Rhodes CT. The polarography of cephalosporin C derivatives. J Pharm Pharmacol 1968;20:45S-7S.PubMedGoogle Scholar
  182. 182.
    Hall DA. Polarography of cephalosporin C derivatives. 1: 3-(5-methyl-1,3,4-thiadiazol-2-ylthiomethyl)-7-[2-(3-sydnone)-acetamido]-3-cephem-4-carboxylic acid, sodium salt. J Pharm Sci 1973;62:980–3.PubMedGoogle Scholar
  183. 183.
    Hall DA, Berry DM, Schneider CJ. The electrochemistry of cephalosporin C derivatives. Part II: Cephalothin, sodium salt. J Electroanal Chem 1977;80:155–70.CrossRefGoogle Scholar
  184. 184.
    Ochiai M, Aki O, Morimoto A, Okada T, Shinozaki K, Asahi Y. Electrochemical reduction of cephalosporanic acids. J Chem Soc [Perkin] I 1974:258–62.CrossRefGoogle Scholar
  185. 185.
    Fogg AG, Fayad NM, Burgess C, McGlynn A. Differential pulse polarographic determination of cephalosporins and their degradation products. Anal Chim Acta 1979;108:205–11.CrossRefGoogle Scholar
  186. 186.
    Rickard EC, Cooke GC. Electrochemical analysis of the cephalosporin cefamandole nafate. J Pharm Sci 1977:66:379–84.PubMedGoogle Scholar
  187. 187.
    Sengun FI, Gurkan T, Fedai I, Sungur S. Analytical investigations of cephalosporins. Part 9. Polarographic behaviour of some selected cephalosporins and assay of their-formulations. Analyst 1985;110:1111–5.CrossRefPubMedGoogle Scholar
  188. 188.
    Ivaska A, Nordstrom F. Determination of some cephalosporins by differential pulse polarography and linear scan voltammetry. Anal Chim Acta 1983;146:87–91.CrossRefGoogle Scholar
  189. 189.
    Fogg AG, Fayad NM. D.p.p. of cephalosporins and their degradation products. In: Smyth WF, ed. Proceedings Electroanalysis in Hygiene, Environmental, Clinical and Pharmaceutical Chemistry. Amsterdam: Elsevier Scientific Publishers BV, 1980:233–43. (Analytical Chemistry Symposia Series. Vol. 2.)Google Scholar
  190. 190.
    Squella JA, Nunez-Vergara LJ, Gonzalez EM. Polarographic analysis of cephalexin. J Pharm Sci 1978;67:1466–7.PubMedGoogle Scholar
  191. 191.
    Fogg AG, Fayad NM, Goyal RN. Differential pulse polarographic determination of cephalexin after hydrolysis in neutral phosphate buffer. J Pharm Pharmacol 1980;32:302–3.PubMedGoogle Scholar
  192. 192.
    Nunez-Vergara LJ, Squella JA, Gonzalez EM. DC Polarography of cephradine and its application to capsules. J Assoc off Anal Chem 1979;62:556–9.PubMedGoogle Scholar
  193. 193.
    Squella JA, Nunez-Vergara LJ. Cathodic and anodic electroactive product from acidic cleavage of cephradine. Anal Lett 1984;17:1343–51.Google Scholar
  194. 194.
    Anonymous. Melkbesluit (Milk Decree). In: Bleys HTM, ed. Warenwetgeving (Food and Drugs Act). 22nd ed. Zwolle: WEJ Tjeenk Willink, 1984. (Editie Schuurman & Jordens. Part 99–1.)Google Scholar
  195. 195.
    Miner DJ. Antibiotics. In: Wong SHY, ed. Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography. New York: Marcel Dekker Inc., 1985:269–307. (Chromatographic Science Series. Vol. 32.)Google Scholar
  196. 196.
    Miyazaki K, Ohtani K, Sunada K, Arita T. Determination of ampicillin, amoxicillin, cephalexin, and cephradine in plasma by HPLC using fluorimetric detection. J Chromatogr 1983;276:478–82.PubMedGoogle Scholar
  197. 197.
    Lee TL, Brooks MA. High-performance liquid chromatographic determination of amoxicillin in human plasma using a bonded-phase extraction. J Chromatogr 1984;306:429–35.PubMedGoogle Scholar
  198. 198.
    Carlqvist J, Westerlund D. Automated determination of amoxycillin in biological fluids by column switching in ion-pair reversed phase liquid Chromatographic systems with post-column derivatization. J Chromatogr 1985;344:285–96.PubMedGoogle Scholar
  199. 199.
    Haginaka J, Wakai J. High-performance liquid chromatographic assay of ampicillin, amoxicillin and ciclacillin in serum and urine using pre-column reaction with 1,2,4-triazole and mercury(II) chloride. Analyst 1985;110:1277–81.CrossRefPubMedGoogle Scholar
  200. 200.
    Terada H, Sakabe Y. Studies on residual antibacterials in foods, IV. Simultaneous determination of penicillin G, penicillin V and ampicillin in milk by highperformance liquid chromatography. J Chromatogr 1985;348:379–87.CrossRefPubMedGoogle Scholar
  201. 201.
    Kok WT, Halvax JJ, Voogt WH, Brinkman UAT, Frei RW. Detection of thioethers of pharmaceutical importance by liquid chromatography with on-line generated bromine. Anal Chem 1985;57:2580–3.CrossRefPubMedGoogle Scholar
  202. 202.
    Demotes-Mainard FM, Vincon GA, Jarry CH, Bourgeois GL, Albin HC. High-performance liquid Chromatographic determination of apalcillin in plasma and yrine. J Chromatogr 1985;342:234–40.PubMedGoogle Scholar
  203. 203.
    Moats WA. Determination of penicillin G and cloxacillin residues in beef and pork tissue by HPLC. J Chromatogr 1984;317:311–8.CrossRefPubMedGoogle Scholar
  204. 204.
    Terada H, Asanoma M, Sakabe Y. Studies on residual antibacterials in foods. III. High-performance liquid Chromatographic determination of penicillin G in animal tissues using an on-line pre-column concentration and purification system. J Chromatogr 1985;318:299–306.CrossRefPubMedGoogle Scholar
  205. 205.
    Rumble RH, Roberts MS. Determination of benzylpenicillin in plasma and urine by high-performance liquid chromatography. J Chromatogr 1985;342:436–41.PubMedGoogle Scholar
  206. 206.
    Munns RK, Shimoda W, Roybal JE, Vieira C. Multiresidue method for determination of eight neutral Β-lactam penicillins in milk by fluorescence-liquid chromatography. J Assoc off Anal Chem 1985, 65:968–71.Google Scholar
  207. 207.
    Moats WA. Determination of penicillin G, penicillin V and cloxacillin in milk by reversed-phase high-performance liquid chromatography. J Agric Food Chem 1983;31:880–3.CrossRefGoogle Scholar
  208. 208.
    Haginaka J, Wakai J. High-performance liquid Chromatographic assay of carbenicillin, ticarcillin and sulbenicillin in serum and urine using pre-column reaction with 1,2,4-triazole and mercury(II)chloride. Analyst 1985;110:1185–8.CrossRefPubMedGoogle Scholar
  209. 209.
    Lindberg RLP, Huupponen RK, Huovinen P. Rapid high-pressure liquid Chromatographic method for analysis of phenoxymethylpenicillin in human serum. Antimicrob Agents Chemother 1984;26:300–2.PubMedGoogle Scholar
  210. 210.
    Watson ID. Clavulanate-potentiated ticarcillin: highperformance liquid Chromatographic assays for clavulanic acid and ticarcillin in serum and urine. J Chromatogr 1985;337:301–9.PubMedGoogle Scholar
  211. 211.
    Nygard G, Khalil SKW. An isocratic HPLC method for the determination of cephalosporins in plasma. J Liq Chromatogr 1984;7:1461–75.Google Scholar
  212. 212.
    Reitberg DP, Schentag JJ. Liquid-chromatographic assay of cefmenoxim in serum and urine. Clin Chem 1983;29:1415–8.PubMedGoogle Scholar
  213. 213.
    Nishihata T, Takahagi H, Yamamoto M, Tomida H, Rytting JH, Higuchi T. Enhanced rectal absorption of cefmetazole and cefoxitin in the presence of epinephrine metabolites in rat and a high-performance liquid Chromatographic assay for cephamycin antibiotics. J Pharm Sci 1984:73:109–12.PubMedGoogle Scholar
  214. 214.
    Brendel E, Zschunke M, Meineke L. High-performance liquid Chromatographic determination of cefonicid in human plasma and urine. J Chromatogr 1985;339:359–65.PubMedGoogle Scholar
  215. 215.
    Dokladalova J, Quercia GT, Stankewich JP. High-performance liquid Chromatographic determination of cefoperazone in human serum and urine. J Chromatogr 1983;276:129–37.PubMedGoogle Scholar
  216. 216.
    Demotes-Mainard FM, Vincon GA, Jarry CH, Albin HC. Micromethod for the determination of cefotaxime and desacetylcefotaxime in plasma and urine by high-performance liquid chromatography. J Chromatogr 1984;336:439–45.Google Scholar
  217. 217.
    Kees F, Grobecker H, Naber KG. High-performance liquid Chromatographic analysis of cefotetan epimers in human plasma and urine. J Chromatogr 1984;305:363–71.PubMedGoogle Scholar
  218. 218.
    Charles BG, Ravenscroft PJ. Rapid HPLC analysis of cefoxitin in plasma and urine. J Antimicrob Chemother 1984;13:291–4.PubMedGoogle Scholar
  219. 219.
    Lakings DB, Wozniak JM. High-performance liquid Chromatographic methods for the determination of cefpimizole in plasma and urine. J Chromatogr 1984;308:261–71.PubMedGoogle Scholar
  220. 220.
    Hwang PTR, Drexler PG, Meyer MC. High-performance liquid Chromatographic determination of ceftazidime in serum, urine, CSF and peritoneal dialysis fluid. J Liq Chromatogr 1984;7:720–4.Google Scholar
  221. 221.
    Leeder JS, Spino M, Tesoro AM, MacLeod SM. HPLC analysis of ceftazidime in serum and urine. Antimicrob Agents Chemother 1983;24:720–4.PubMedGoogle Scholar
  222. 222.
    Myers CM, Blumer JL. Determination of ceftazidime in biological fluids by using HPLC. Antimicrob Agents Chemother 1983;24:343–6.PubMedGoogle Scholar
  223. 223.
    LeBel M, Ericson JF, Pitkin DH. Improved high-performance liquid Chromatographic (HPLC) assay method for ceftizoxime. J Liq Chromatogr 1984;7:961–8.Google Scholar
  224. 224.
    Ascalone V, Dalbo L. Determination of ceftriaxone, a novel cephalosporin in plasma, urine and saliva by high-performance liquid chromatography on an NH2 bonded-phase column. J Chromatogr 1983;273:357–66.PubMedGoogle Scholar
  225. 225.
    Van der Stroom, JH. Residues of penicillin G in milk. Utrecht: State University of Utrecht, 1985. Dissertation.Google Scholar
  226. 226.
    Bishop JR, Bodine AB, O'Dell GD, Janzen JJ. Quantitative assay for antibiotics used commonly in treatment of bovine infections. J Dairy Sci 1985;68:3031–6.PubMedGoogle Scholar
  227. 227.
    Jones GT, Beezer AE, Cosgrove RF, Smith ARW. Rapid microbiological pH assay for the determination of cephradine in pharmaceutical formulations and biological fluids. J Pharm Biomed Anal 1985;3:367–70.CrossRefGoogle Scholar
  228. 228.
    Everett JR, Jennings KR, Woodnutt G, Buckingham MJ. Spin-echo 'H NMR spectroscopy: a new method for studying penicillin metabolism. J Chem Soc Chem Commun 1984:894–7.Google Scholar
  229. 229.
    Kroll MH, Hagengruber C, Elin RJ. Reaction of picrate with creatinine and cepha antibiotics. Clin Chem 1984;30:1664–6.PubMedGoogle Scholar
  230. 230.
    Post D. Antibioticaprescriptie in de huisartspraktijk, te veel en te duur? (Prescription of antibiotics in general practice, too much and too expensive?) Pharm Weekbl 1985;120:4–7.Google Scholar
  231. 231.
    Degener JE. Antibiotica — toepassing met beleid. (Antibiotics — application with care) Geneesmiddelen-bulletin 1985;19:19–24.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1987

Authors and Affiliations

  • P. C. van Krimpen
    • 1
  • W. P. van Bennekom
    • 1
  • A. Bult
    • 1
  1. 1.Department of Chemical Pharmacy, Section of Pharmaceutical Analysis, Subfaculty of PharmacyState University of UtrechtGH UtrechtThe Netherlands

Personalised recommendations