Pharmacy World and Science

, Volume 16, Issue 1, pp 2–6 | Cite as

Can we develop improved derivatives of valproic acid?

  • Meir Bialer
  • Abdullah Haj-Yehia
  • Khalil Badir
  • Salim Hadad


Valproic acid is one of the major antiepileptic drugs. In animal models, valproate showed less anticonvulsant potency than the other three established antiepileptic drugs: phenobarbital, phenytoin and carbamazepine. In addition, two major side-effects, teratogenicity and hepatotoxicity, have been associated with valproate Iherapy. Due to the above and the shortage of new antiepileptic drugs there is a substantial need to develop improved derivatives of valproate. This paper analyses three kinds of valproate derivatives: valpromide, the primary amide of valproate, and its analogues; monoester prodrugs of valproate and an active metabolite of valproate, 2-n-propyl-2-pentenoate. The comparative evaluation was carried out by pharmacokinetic and pharmacodynamic analyses in animals. From the data accumulated so far, we can conclude that 2-n-propyl-2-pentenoatc and/or a valpromide isomer, which does not undergo amide acid biotransformation and preferably is not an epoxide hydrolase inhibitor, may prove to be improved derivatives of the parent compound valproic acid.


Drug evaluation Pharmacokinetics 2-n-Propyl-2-pentenoic acid Structure-activity relationship Valproic acid Valpromide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Porter RJ. Antiepileptic drugs: efficacy and inadequacy. In: Meldrum BS, Porter RJ, editors. New anticonvulsant drugs. London: John Libbey, 1986:3–16.Google Scholar
  2. 2.
    Levy RH, Shen DD. Valproate: absorption, distribution, and excretion. In: Levy RH, Dreifuss FE, Mattson RH, Meldrum BS, Penry JK, editors. Antiepileptic drugs, 3rd ed. New York: Raven Press, 1989:583–600.Google Scholar
  3. 3.
    Levy RH, Valproate, modern perspectives. Epilepsia 1984;25 Suppl 1:1–77.Google Scholar
  4. 4.
    Zaccara G, Messori A, Moroni F, Clinical pharmacokinetics of valproic acid — 1988. Clin Pharmacokinet 1989;15:367–89.Google Scholar
  5. 5.
    Gugler R, Von Unruh E, Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 1980;5:67–83.Google Scholar
  6. 6.
    Pisani F, Fazio A, Oteri G, Di Perri A, Dipropylacetic acid plasma levels: diurnal fluctuations during chronic treatment with dipropylacetamide. Ther Drug Monit 1981;3:297–301.Google Scholar
  7. 7.
    Pisani F, Di Perri R. Some clinical and pharmacological aspects ofn-dipropylacetamide. Ital J Neural Sci 1980;4:245–9.Google Scholar
  8. 8.
    Bialer M, Rubinstein A, Raz I, Abramsky O. Pharmacokinetics of valpromide after oral administration of a solution and a tablet to healthy subjects. Eur J Clin Pharmacol 1984;27:501–3.Google Scholar
  9. 9.
    Bialer M, Rubinstein A, Dubrovsky J, Raz I, Abramsky O. A comparative pharmacokinetic study of valpromide and valproic acid after intravenous administration in humans. Int J Pharm 1985;23:25–33.Google Scholar
  10. 10.
    Bialer M. Clinical pharmacology of valpromide. Clin Pharmacokinet 1991;20:114–22.Google Scholar
  11. 11.
    Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of valpromide derivatives with antiepileptic activity. Pharm Res 1989;6:683–4.Google Scholar
  12. 12.
    Haj-Yehia A, Bialer M. Structure-pharmacokinetic relationships in a series of short fatty acid amides that possess anticonvulsant activity. J Pharm Sci 1990;79:719–24.Google Scholar
  13. 13.
    Haj-Yehia A, Hadad S, Bialer M. Pharmacokinetic evaluation of the structural requirement for a stable valproate analogue. Pharm Res 1992;9:1058–63.Google Scholar
  14. 14.
    Badir K, Haj-Yehia A, Vree TB, Van der Kleijn E, Bialer M. Pharmacokinetic analysis and anticonvulsant effects of three mono-esteric prodrugs of valproic acid. Pharm Res 1991;8:750–3.Google Scholar
  15. 15.
    Hadad S, Vree TB, Van der Kleijn E, Bialer M. Pharmacokinetic analysis of ester prodrugs of valproic acid. J Pharm Sci 1992;81:1047–50.Google Scholar
  16. 16.
    Bialer M, Friedman M, Dubrovsky J. A rapid GLC assay for monitoring valproic acid and valpromide in plasma. J Pharm Sci 1984;73:991–3.Google Scholar
  17. 17.
    Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. J Pharmacokinet Biopharm 1977;6:547–58.Google Scholar
  18. 18.
    Gibaldi M, Perrier D. Pharmacokinetics, 2nd ed. New York: Marcel Dekker, 1982:409–17.Google Scholar
  19. 19.
    Yamaoka K. Methods for pharmacokinetic analysis for personal computers, 2nd ed. Tokyo: Nanko-D, 1986:145–75.Google Scholar
  20. 20.
    Porter RJ, Ceregino JJ, Gladding GD, Hessie BJ, Kupferberg HJ, Scoville B. Antiepileptic drug development program. Cleve Clin Q 1984;51:293–305.Google Scholar
  21. 21.
    Bialer M, Haj-Yehia A, Barzaghi N, Pisani F, Perruca E. Pharmacokinetics of a valpromide isomer, valnoctamide in healthy subjects. Eur J Clin Pharmacol 1990;38:289–91.Google Scholar
  22. 22.
    Pisani F, Haj-Yehia A, Fazio F, Artesi C, Oteri G, Perucca E, et al. Carbamazepine-valnoctamide interaction in epileptic patients:In vitro/in vitro correlation. Epilepsia 1993;34:945–9.Google Scholar
  23. 23.
    Haj-Yehia A, Bialer M. Pharmacokinetics of valpromide isomer valnoetamide in dogs. J Pharm Sci 1988;77:831–4.Google Scholar
  24. 24.
    Löscher W, Nau H. Pharmacological evaluation of various metabolites and analogues of valproic acid. Anticonvulsant and toxic potencies in mice. Neuropharmacology 1985;24:427–35.Google Scholar
  25. 25.
    Nau H, Hendrickx AG. Valproic acid teratogenesis. ISI Atlas Sci Pharmacol 1987:52–6.Google Scholar
  26. 26.
    Nau H, Hauck R-S, Ehlers K. Valproic acid-induced neural tube defects in mouse and humans: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanism. Pharmacol Toxicol 1991;69:310–21.Google Scholar
  27. 27.
    Reekers-Ketting JJ, Van der Kleijn E, Leliveld BA, Schobben AFAM, Vree TB. Pharmacokinetics of di-propyl acetate (Depakine®) in different dosage forms in man and rhesus monkeys. Pharm Weekbl 1975;110(49):1232–6.Google Scholar
  28. 28.
    Bialer M, Friedman M, Dubrovsky J, Raz I, Abramsky O. Pharmacokinetic evaluation of novel sustained release dosage forms of valproic acid in humans. Biopharm Drug Dispos 1985;6:401–11.Google Scholar
  29. 29.
    Kerr BM, Rettie AE, Eddy AC, Loiseau P, Guyot M, Wilensky AJ. Inhibiton of human liver microsomal epoxide hydrolase by valproate and valpromide:in vitro/in vivo correlation. Clin Pharmacol Ther 1989;46:82–93.Google Scholar
  30. 30.
    Pisani F, Fazio A, Aresi C, Oteri G, Spina E, Tomson T, et al. Impairment of carbamazepine 10,11-epoxide elimination by valnoctamide, a valpromide isomer, in healthy subjects. Eur J Clin Pharmacol 1992;34:85–7.Google Scholar
  31. 31.
    Löscher W. Concentration of metabolites of valproic acid in plasma of epileptic patients. tpilepsia 1981;22:169–78.Google Scholar
  32. 32.
    Löscher W, Nau H, Marescaux C, Vergens M. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-ene-valproic acid in different animal models of epilepsy. Eur J Clin Pharmacol 1984;99:211–8.Google Scholar
  33. 33.
    Nau H. Transfer of valproic acid and its main active unsaturated metabolite to the gestational tissue: correlation with neural tube defect formation in the mouse. Teratology 1986;33:21–7.Google Scholar
  34. 34.
    Löscher W. Anticonvulsant activity of metabolites of valproic acid. Arch Int Pharmacodyn Ther 1981;249:158–63.Google Scholar
  35. 35.
    Düsing RH. Single-dose tolerance and pharmacokinetics of 2-n-propyl-2(E)-pentenoate [Δ2(E)-valproate] in healthy male volunteers. Pharm Weekbl Sci 1992; 14:152–8.Google Scholar

Copyright information

© Royal Dutch Association for Advancement of Pharmacy 1994

Authors and Affiliations

  • Meir Bialer
    • 1
  • Abdullah Haj-Yehia
    • 1
  • Khalil Badir
    • 1
  • Salim Hadad
    • 1
  1. 1.Department of Pharmacy, School of Pharmacy, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael

Personalised recommendations