How adverse drug reactions can play a role in innovative drug research
- 40 Downloads
- 6 Citations
Abstract
We describe how adverse drug reactions (ADRs) can play an important role in pharmaceutical research and drug development. Not only do ADRs represent the risks and drawbacks associated with drugs but they can also be related to other knowledge available in pharmaceutical and medical research. We offer a model that can be used to systematically map the pathways through which ADRs can lead to innovative research. These pathways include chemical, therapeutic or pathophysiological steps that can be taken to arrive at new knowledge based on ADRs. We used the development of angiotensin-converting enzyme inhibitors, especially captopril, as a case study. The similarity between the ADR profiles of captopril and penicillamine was a starting point for further innovation. Historical analysis shows that in several instances research in the field of angiotensin-converting enzyme inhibitors has been triggered by ADRs. The model presented here might be applicable to other areas of innovative drug research.
Keywords
Angiotensin-converting enzyme inhibitors Adverse effects Captopril Drug design History of pharmacy PenicillaminePreview
Unable to display preview. Download preview PDF.
References
- 1.Atkinson AB, Robertson JIS. Captopril in the treatment of clinical hypertension and cardiac failure. Lancet 1979;2:836–9.CrossRefPubMedGoogle Scholar
- 2.Edwards CRW, Padfield PL. Angiotensin-converting enzyme inhibitors: past, present, and bright future. Lancet 1985;1:30–4.PubMedGoogle Scholar
- 3.Ertl G, Gaudron P, Neubauer S, Buer B. Prävention mit Angiotensin-Konversionsenzym(ACE)-Hemmern. Z Kardiol 1992;81 Suppl 4:205–10.Google Scholar
- 4.Heeg JE. The antiproteinuric effect of ACE inhibition in renal disease [dissertation]. Zwolle: University of Groningen, 1992.Google Scholar
- 5.Zanchetti A. Thou, gentle viper: an introduction. Am J Cardiol 1982;49:1381–2.Google Scholar
- 6.Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, Kocy O. Angiotensin-converting enzyme inhibitors from the venom ofBothrops jararaca. Isolation, elucidation of structure, and synthesis. Biochemistry 1971;10:4033–9.PubMedGoogle Scholar
- 7.Maxwell RA, Eckhardt SB. “Captopril”. In: Drug discovery — a case book and analysis. Clifton: Humana Press, 1990: 19–34.Google Scholar
- 8.Cushman DW, Cheung HS, Sabo EF, Ondetti MA. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 1977;16:5484–91.CrossRefPubMedGoogle Scholar
- 9.Patchett AA, Harris E, Tristram EW, Wyvratt MJ, Wu MT, Taub D, et al. A new class of angiotensin-converting enzyme inhibitors. Nature 1980;288:280–3.PubMedGoogle Scholar
- 10.Davis JO, Freeman RH. Historical perspectives on the reninangiotensin-aldosterone system and angiotensin blockade. Am J Cardiol 1982;49:1385–9.PubMedGoogle Scholar
- 11.Gross F. Angiotensin-converting enzyme inhibition: A developing therapeutic concept. Am J Cardiol 1982;49:1384.PubMedGoogle Scholar
- 12.Laragh JH. Conceptual, diagnostic and therapeutic dimensions of renin-system profiling of hypertensive disorders and of congestive heart failure: four new research frontiers. In: Doyle AE, Bearn AG, editors. Hypertension and the angiotensin system. New York: Raven Press, 1983:47–72.Google Scholar
- 13.Vos R. Drugs looking for diseases. A descriptive model for the process of innovative drug research with special reference to the development of the beta blockers and the calcium antagonists. Dordrecht: Kluwer Academic Publishers, 1990.Google Scholar
- 14.Spilker B. Multinational drug companies. Issues in drug discovery and development. New York: Raven Press, 1989.Google Scholar
- 15.Nwangwu PU. The process of new drug development: current deficiencies and opportunities for improvement. In: Concepts and strategies in new drug development. New York: Praeger Publishers, 1983.Google Scholar
- 16.Prins EJL. Converting-enzyme inhibition experiences with captopril in hypertensive patients [dissertation], Assen: Van Gorcum, 1979.Google Scholar
- 17.Prins EJL, Hoorntje SJ, Weening JJ, Donker AJM. Nephrotic syndrome in a patient on captopril. Lancet 1979;2:306–7.Google Scholar
- 18.Hoorntje SJ, Weening JJ, Kallenberg CGM, Prins EJL, Donker AJM. Serum-sickness-like syndrome with membranous glomerulopathy in patient on captopril. Lancet 1979;2:1297.CrossRefGoogle Scholar
- 19.Seedat YK. Aphthous ulcers of mouth from captopril. Lancet 1979;2:1297–8.CrossRefGoogle Scholar
- 20.Hoorntje SJ, Kallenberg CGM, Weening JJ, Donker AJM, The TH, et al. Immune-complex glomerulopathy in patients treated with captopril. Lancet 1980;1:1212–1214.PubMedGoogle Scholar
- 21.Hoorntje SJ. Merits and demerits of the converting-enzyme inhibitor captopril in antihypertensive treatment [dissertation]. Groningen: University of Groningen, 1981.Google Scholar
- 22.Ondetti MA, Cushman DW, Rubin B. Captopril. In: Bindra JS, Lednicer D, editors. Chronicles of drug research. Vol. II. Chichester: John Wiley & Sons, 1983:1–31.Google Scholar
- 23.Cushman DW, Ondetti MA. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 1991;17:589–92.PubMedGoogle Scholar
- 24.Ondetti MA. Angiotensin converting enzyme inhibitors. An overview. Hypertension 1991;18:S134–5.Google Scholar
- 25.Case DB, Atlas SA, Mouradian JA, Fishman RA, Sherman RL, Laragh JH. Proteinuria during long-term captopril therapy. JAMA 1980;244:346–9.PubMedGoogle Scholar
- 26.Neelima BKB, Bhaduri AP. Recent advances in drugs against hypertension. In: Kucker E, editor. Progress in drug research. Vol. 29. Basel: Birkhäuser Verlag, 1985:219–76.Google Scholar
- 27.Schier O, Marxer A. Antihypertensive agents 1969–1980. Drugs Res 1980;25:9.Google Scholar
- 28.Parfrey PS, Clement M, Vandenburg MJ, Wright P. Captopril-induced pemphigus. BMJ 1980;281:194.Google Scholar
- 29.Reinhardt LA, Wilkin JK, Kirkendall WM. Lichenoid eruption produced by captopril. Cutis 1983;31:98–9.PubMedGoogle Scholar
- 30.Heel RC, Brogden RN, Speight TM, Avery GS. Captopril: A preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 1980;20:409–52.PubMedGoogle Scholar
- 31.Patchett AA. The design of enalapril. In: Doyle AE, Bearn AG, editors. Hypertension and the angiotensin system: therapeutic approaches. New York: Raven Press, 1983:155–66.Google Scholar
- 32.Gavras I, Gavras H. Clinical utility of angiotensin converting enzyme inhibitors in hypertension. Am J Med 1986;81 Suppl 4C:28–31.Google Scholar
- 33.Soudijn W. Angiotensin converting enzyme inhibitors. Pharm Weekbl Sci 1982;4:154–8.PubMedGoogle Scholar
- 34.Drury PL, Rudge SR, Perrett D. Structural requirements for activity of certain ‘specific’ antirheumatic drugs: more than a simple thiol group? Br J Rheumatol 1984;23:100–6.PubMedGoogle Scholar
- 35.Huck F, de Medices R, Lussier A, Dupuis G, Federlin P. Reducing property of some slow acting antirheumatic drugs. J Rheumatol 1984;11:605–9.PubMedGoogle Scholar
- 36.Jaffe IA. Adverse effects profile of sulfhydryl compounds in man. Am J Med 1986;80:471–6.PubMedGoogle Scholar
- 37.Kitamura K, Aihara M, Osawa J, Naito S, Ikezawa Z. Sulphydryl drug-induced eruption: a clinical and histological study. J Dermatol 1990;17:44–51.PubMedGoogle Scholar
- 38.Atkinson AB, Brown JJ, Fraser R, Leckie B, Lever AF, Morton JJ, et al. Captopril, angiotensin II, and sodium in blood-pressure regulation. Lancet 1979;1:1140.Google Scholar
- 39.Hoorntje SJ, Prins EJL, Donker AJM. Reply to Atkinson [letter]. Lancet 1979;1:1140.Google Scholar
- 40.MacGregor GA, Markandu ND, Roulston JE, Jones JC. Essential hypertension: effect of an oral inhibitor of angiotensin-converting enzyme. BMJ 1979;2:1106–9.PubMedGoogle Scholar
- 41.Smith SJ, Markandu ND, MacGregor GA. Optimal dose of captopril in hypertension. Lancet 1982;2:1460.Google Scholar
- 42.Cleland JGF, Dargie HJ, Hodsman GP, Ball SG, Robertson JIS, Morton JJ, et al. Captopril in heart failure, a double blind controlled trial. Br Heart J 1984;52:530–5.PubMedGoogle Scholar
- 43.Martin MFR, Surrall KE, McKenna F. Captopril: a new treatment for rheumatoid arthritis? Lancet 1984;2:1325–7.Google Scholar
- 44.Bravard P, Barbet M, Eich D, Weber M, Daniel F. Lauret P. Eruption lichenoide au captopril. Ann Dermatol Venereol 1983;110:433–8.PubMedGoogle Scholar
- 45.Martin MFR, Surral K, McKenna F, Dixon JS, Bird HA, Wright V. Captopril: A new long-term agent for treating rheumatoid arthritis. Ann Rheum Dis 1983;42:231.Google Scholar
- 46.Jaffe IA. Induction of auto-immune syndromes by penicillamine therapy in rheumatoid arthritis and other diseases. Semin Immunopathol 1981;4:193–207.Google Scholar
- 47.Jaffe IA. Angiotensin converting enzyme inhibitors in rheumatoid arthritis. Arthritis Rheum 1984;27:841.PubMedGoogle Scholar
- 48.Beranek JT. Angiotensin converting enzyme in rheumatoid arthritis. Ann Rheum Dis 1993;52:86.Google Scholar
- 49.Bird H, Le Gallez P, Dixon JS, Catalano MA, Traficante A, Liauw L, et al. A clinical and biochemical assessment of a nonthiol ACE inhibitor (pentopril; CGS-13945) in active rheumatoid arthritis. J Rheumatol 1990;17:603–8.PubMedGoogle Scholar
- 50.Larbre JP, Nicolas JF, Collet P, Larbre B, Llorca G. Kaposi's sarcoma in a patient with rheumatoid arthritis possible responsibility of captopril in the development of lesions. J Rheumatol 1991;18:476–7.PubMedGoogle Scholar
- 51.Hammond WP, Miller JE, Starkebaum G, Zweerink HJ, Rosenthal AS, Dale DC. Suppression ofin vitro granulocytopoiesis by captopril and penicillamine. Exp Hematol 1988;16:674–80.PubMedGoogle Scholar
- 52.Donker AJ, Venuto RC, Vladutiu AO, Brentjens JR, Andres GA. Effects of prolonged administration ofD-penicillamine and captopril in various strains of rats. Clin Immunol Immunopathol 1984;30:142–55.PubMedGoogle Scholar
- 53.Jaffe IA. Penicillamine, immune complexes, and the kidney. Lancet 1980;2:146.Google Scholar
- 54.Ondetti MA. Structural relationships of angiotensin converting-enzyme inhibitors to pharmacologic activity. Circulation 1988;77(Suppl 1):174–8.Google Scholar
- 55.Cushman DW, Cheung HS, Sabo EF, Rubin B, Ondetti MA. Development of specific inhibitors of angiotensin I converting enzyme (kininase II). Fed Proc 1979;38:2778–82.PubMedGoogle Scholar
- 56.US Congress, Office of Technology Assessment, Pharmaceutical R&D: costs, risks and rewards, OTA-H-522. Washington: US Government Printing Office, 1993.Google Scholar
- 57.Blumenthal SJ. Examples from discovery of new drug therapies based on the study of adverse reactions. Drug Inform J 1989;23:267–71.Google Scholar