Advertisement

Mineralogy and Petrology

, Volume 64, Issue 1–4, pp 149–162 | Cite as

Magmatic sulfides and oxides in volcanic rocks from the Pitcairn hotspot (South Pacific)

  • D. Ackermand
  • R. Hekinian
  • P. Stoffers
Article

Summary

The Pitcairn hotspot, located about 60 km east of Pitcairn Island (South Pacific), consists of several active volcanoes < 500 m below sea level. The volcanic rocks from these seamounts are classified in four main rock-types: (1) picritic basalt containing Ti-bearing chromite (8–10 wt.% TiO2); (2) alkali basalt (Ti-bearing chromite with 4–6 wt.% TiO2); (3) trachyandesite containing titanomagnetite (18–22 wt.% TiO2); and sulfides, and (4) trachyte (titanomagnetite with 19–23 wt.% TiO2); The metallic oxides are zoned with decreasing Tîl02 contents from core to rim. Crystal fractionation (> 60%) is the main process responsible for differentiating these rock-types from an enriched source.

Pyrrhotite and rare chalcopyrite grains in contact with pyrrhotite are observed only in the trachyandesite (3) in disseminated phenocryst clusters, usually in contact with large euhedral titanomagnetite phenocrysts. In addition, large euhedral pyrrhotite flakes, some with hexagonal habit, coat the walls of vesicles. All these pyrrhotite grains show a small range in Fe/S (0.90–0.99). The pyrrhotite in clusters precipitated earlier or simultaneously with titanomagnetite in a magmatic reservoir during crystal-liquid fractionation. Late precipitated vesicle pyrrhotite was formed by diffusion of Fe from the trachyandesitic liquid after the formation of the vesicles. Iron diffused from the glassy groundmass into the vesicle and reacted there with sulfur-bearing volatiles.

Keywords

TiO2 Sulfide Volcanic Rock Chalcopyrite Chromit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Magmatische Sulfide und Oxyde in Vulkaniten vom Pitcairn Hotspot (S-Pazifik)

Zusammenfassung

Der Pitcairn Hotspot, ca. 60 km östlich von der Insel Pitcairn, besteht aus mehreren noch aktiven Vulkanen, die bis zu 500m unter dem Meeresspiegel aufragen. Die Hotspot Gesteinsproben können vier Vulkanittypen zugeordnet werden: (1) Pikritbasalt mit Ti-reichem Chromit (8–10 Gew.% TiO2); (2) Alkalibasalt (Ti-reicher Chromit, 4–6 Gew.% TiO2); (3) Trachyandesit mit Titanomagnetit (18–22 Gew.% TiO2); und Sulfiden sowie (4) Trachyt (Titanomagnetit, 19–23 Gew.% TiO2); Die Metalloxyde haben, verbunden mit abnehmendem TiO2-Gehalt, einen Zonarbau vom Kern zum Rand. Eine Kristallfraktionierung (< 60 %) ist Hauptursache für die Differenzierung der vier Vulkanittypen aus einer angereicherten Magmenquelle.

Pyrrhotit und sehr wening Chalkopyrit als Kontaktphase zum Pyrrhotit sind nur im Trachyandesit (3) in Clustern mit idiomorphen Kristalleinsprenglingen im Kontakt mit Titanomagnetit gefunden worden. Weiterhin bedecken große idiomorphe Pyrrhotit plättchen, davon einige mit hexagonalem Habitus, die Wände der Gasblasen. Die Variationsbreite des Fe/S aller Pyrrhotite ist mit 0,90-0,99 gering. Die Pyrrhotite in den Clustern sind früher als oder gleichzeitig mit Titanomagnetit im Magmenreservoir während der Kristall-Schmelze Fraktionierung auskristallisiert. Die spät gebildeten Pyrrhotite in den Gasblasen sind durch einen Diffusionsprozeß von Fe aus der trachyandesitischen Schmelze entstanden. Eisen diffundierte aus der glasigen Grundmasse in die Hohlräume und reagierte dort mit Schwefel, der als volatiler Bestandteil vorlag.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach W, Hegener E, Erzinger J, Satir M (1994) Chemical and isotopic variations along the superfast spreading East Pacific Rise from 6° to 30° S. Contrib Mineral Petrol 206: 365–380Google Scholar
  2. Binard N, Hekinian R, Stoffers P (1992) Morphostructural study and type of volcanism of submarine volcanoes over the Pitcairn hotspot in the South Pacific. Tectonophysics 206: 245–264Google Scholar
  3. Govindaraju K (1989) Compilation of working values and sample description for 272 geostandards. Spec Issue, Geostandards Newsletter 13: 1–113Google Scholar
  4. Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69: 451–467Google Scholar
  5. Hekinian R, Stoffers P, Ackermand D, Binard N, Franchteau J, Devey CW, GarbeSchönberg D (1995) Magmatic evolution of the Easter Microplate-Crough Seamount region (South East Pacific). Marine Geophys Res 17: 375–397Google Scholar
  6. Mathez EA (1976) Sulfur solubility and magmatic sulfides in submarine basalt glass. J Geophys Res 81: 4269–4275Google Scholar
  7. Moore JG, Clark L (1971) Sulfide spherules in vesicles of dredged pillow. Am Mineral 56: 476–488Google Scholar
  8. Nielson RL (1988) A model for simulation of combined major and trace element liquid lines of descent. Geochim Cosmochim Acta 52: 27–38Google Scholar
  9. Nielson RL (1990) Theory and application of a model of open magmatic system processes. In:Nicholls J, Russell JK (eds) Modern methods of igneous petrology. Mineral Sci America, Washington DC [Rev Mineral 24: 65–106Google Scholar
  10. Nielson RL, Delong SE (1992) A numerical approach to boundary layer fractionation: application to differentiation in natural magma systems. Contrib Mineral Petrol 110: 335–369Google Scholar
  11. Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray microanalysis, part I. Application to the analysis of homogeneous samples. La Récherche Aérospatiale 3: 13–36Google Scholar
  12. Stoffers P et al. (1989) Cruise Report SONNE 65-Midplate II Hotspot Volcanism in the Central South Pacific. Berichte-Reports, Geol-Paläont Inst, Univ Kiel 40: 223 ppGoogle Scholar
  13. Stoffers P, Hekinian R.Ackermand D, Binard N, Botz R, Devey CW, Hansen DD, Hodkinson R, Jeschke G, Lange J, Perre E vd, Scholten J, Schmit M, Sedwick P, Woodhead JD (1990) Active hotspot found. Marine Geol 95: 51–55Google Scholar
  14. Woodhead JD, Devey CW (1993) Geochemistry of the Pitcairn seamounts, 1. Source character and temporal trends. Earth Planet Sci Lett 116: 81–99Google Scholar
  15. Woodhead JD, McCuloch MT (1989) Ancient seafloor signals in Pitcairn Island lavas for large amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett 94: 257–273Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • D. Ackermand
    • 1
  • R. Hekinian
    • 2
  • P. Stoffers
    • 3
  1. 1.Mineralogisch-Petrographisches InstitutUniversität KielKielGermany
  2. 2.Centre Océanologique de BretagnéIFREMER, DRO/GMPlouzanèFrance
  3. 3.Geologisch-Paldontologisches InstitutUniversität KielKielGermany

Personalised recommendations