Advertisement

Journal of Materials Science

, Volume 29, Issue 8, pp 2025–2039 | Cite as

Heat transfer aspects of splat-quench solidification: modelling and experiment

  • T. Bennett
  • D. Poulikakos
Papers

Abstract

In this paper a combined theoretical and experimental study is reported on the process of solidification of a liquid metal droplet by impaction on a cold substrate (splat-quenching). The study is focused on the heat transfer aspects of this process and on the identification of parameters affecting the heat transfer mechanism. To this end, the effect of the droplet impact velocity and temperature, the effect of the substrate material and its initial temperature, and the effect of the thermal contact resistance between the splat and the substrate are investigated. A two-dimensional conduction model accounting for the freezing process in the splat and for the solidification kinetics has predicted reasonably well the trends observed in the experimental part of the study.

Keywords

Heat Transfer Liquid Metal Contact Resistance Impact Velocity Substrate Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

c

Specific heat

D

Droplet diameter

g

Gravitational acceleration

ha

Heat transfer coefficient between splat and ambient

hc

Heat transfer coefficient for splat-substrate interface

H

Thickness of splat

k

Thermal conductivity

Kf

Freezing kinetics coefficient

L

Free-fall distance

Lf

Latent heat of freezing

Nud

Nusselt number (hD/k)

Pr

Prandtl number (v/α)

r

Radial distance

R

Radius of splat

Re

Reynolds number (uD/v)

t

Time

tc

Free-fall time

T

Temperature

Tf

Freezing temperature of splat

Ti

Freezing interface temperature

T0

Substrate temperature

T

Ambient temperature

ΔTc

Temperature drop across the splat-substrate interface

u

Impact velocity of droplet

V

Freezing interface velocity

z

Axial distance

α

Thermal diffusivity

v

Kinematic viscosity

θ

Instantaneous temperature difference between falling droplet and ambient

θa

Initial temperature difference between falling droplet and ambient

Subscripts

1

Liquid phase

s

Solid phase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Jones, “Rapid Solidification of Metals and Alloys”, Monograph 8 (Institution of Metallurgists, London, 1982).Google Scholar
  2. 2.
    E. Gutierrez-Miravete, PhD thesis, Massachusetts Institute of Technology (1985).Google Scholar
  3. 3.
    S. Annavarapu, D. Apelian, andA. Lawley,Metall. Trans. 21A (1990) 3237.Google Scholar
  4. 4.
    R. H. Bricknell,ibid. 7A (1986) 583.Google Scholar
  5. 5.
    R. G. Brooks, C. Moore, A. G. Leatham andJ. S. Coombs,Powder Metall. 2 (1977) 100.Google Scholar
  6. 6.
    T. R. Anantharaman andC. Suryanarayana,J. Mater. Sci. 6 (1971) 1111.Google Scholar
  7. 7.
    P. Predecki, A. W. Mullendore andN. G. Grant,Trans. Metall. Soc. AIME 233 (1965) 1581.Google Scholar
  8. 8.
    W. E. Brower Jr,R. Strachan andM. C. Flemings,AFS Cast Met. Res. J. 6 (1970) 176.Google Scholar
  9. 9.
    M. G. Scott,J. Mater. Sci. 9 (1974) 1372.Google Scholar
  10. 10.
    G.-X. Wang andE. F. Matthys,Int. J. Rapid Solidifi. 6 (1991) 141.Google Scholar
  11. 11.
    Idem, Int. J. Heat Mass Transf. 35 (1992) 141.Google Scholar
  12. 12.
    P. H. Shingu andR. Ozaki,Metall. Trans. 6A (1975) 33.Google Scholar
  13. 13.
    D. E. Rosnar andM. Epstein,Chem. Eng. Sci. 30 (1975) 511.Google Scholar
  14. 14.
    P. V. Evans andA. L. Greer,Mater. Sci. Eng. 98 (1988) 357.Google Scholar
  15. 15.
    P. Mathur, D. Apelian andA. Lawley,Acta Metall. 37 (1989) 429.Google Scholar
  16. 16.
    E. Gutierrez-Miravete, E. J. Lavernia, G. M. Trapaga, J. Szekely andN. J. Grant,Metall. Trans. 20A (1989) 71.Google Scholar
  17. 17.
    W. Ranz andW. Marshall,Chem. Eng. Prog. 48 (1952) 141.Google Scholar
  18. 18.
    D. A. Anderson, J. C. Tannehill andR. H. Pletcher, “Computational Fluid Mechanics and Heat Transfer”. (Hemisphere, New York 1984) p. 117.Google Scholar
  19. 19.
    T. D. Bennett, Ms Thesis, University of Illinois at Chicago (1993).Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • T. Bennett
    • 1
  • D. Poulikakos
    • 1
  1. 1.Mechanical Engineering DepartmentUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations