Journal of Materials Science

, Volume 30, Issue 19, pp 5031–5035 | Cite as

Schottky barrier height enhancement on n-In0.53Ga0.47As by (NH4)2Sx surface treatment

  • S. T. Ali
  • A. Kumar
  • D. N. Bose


(NH4)2SxSurface treatment was found to increase the barrier height (φBn) for Au/In0.53Ga0.47As Schottky junctions from 0.26 eV to 0.58 eV at 300 K as determined from Richardson plots. The ideality factorn thus decreased from 2.7 to 1.6 and the reverse saturation current densityJ0 from 9.4 Acm−2 to 3.4×10−5A cm−2. The values of the effective Richardson constant were also evaluated. The chemical state of In0.53Ga0.47As surfaces before and after (NH4)2Sx modification, examined by X-ray photoelectron spectroscopy (XPS), indicated bond formation of S with In, Ga and As.


Polymer Spectroscopy Barrier Height Surface Treatment Bond Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kajiyama, Y. Mizushima andS. Sakata.Appl. Phys. Lett. 23 (1973) 458.CrossRefGoogle Scholar
  2. 2.
    H. Tamura, A. Yoshida, S. Muto andS. Hasuo,Jpn. J. Appl. Phys. 26 (1987) L7.CrossRefGoogle Scholar
  3. 3.
    H. Morkoc, T. J. Drumond andC. M. Stanchak,IEEE Trans. Elect. Devices ED-28 (1981) 1.CrossRefGoogle Scholar
  4. 4.
    S. Loualiche, H. Haridon, A. Lecorre, D. Lucrosnier, M. Salri andP. N. Favennec,Appl. Phys. Lett. 52 (1988) 540.CrossRefGoogle Scholar
  5. 5.
    K. C. Hwang, S. S. Li, C. Park andT. J. Anderson,J. Appl. Phys. 67 (1990) 6571.CrossRefGoogle Scholar
  6. 6.
    J. H. Kim, S. S. Li, L. Figueroa, T. F. Carruthers andR. S. Wagner,Ibid. 64 (1988) 6536.CrossRefGoogle Scholar
  7. 7.
    P. Kordos, M. Marso, R. Meyer andH. Luth,Ibid. 72 (1992) 2347.CrossRefGoogle Scholar
  8. 8.
    D. Khul, F. Hieronymi, E. M. Bottcher, T. Wolf, A. Krost andD. Bimberg,Elect. Lett. 26 (1990) 2107.CrossRefGoogle Scholar
  9. 9.
    W. P. Hong, G. K. Chang andR. Bhat,IEEE Trans. Elect. Devices ED-36 (1989) 659.CrossRefGoogle Scholar
  10. 10.
    T. Kikuchi, H. Ohno andH. Hasegawa,Elect. Lett. 24 (1988) 1208.CrossRefGoogle Scholar
  11. 11.
    T. Suemasu, Y. Miyamoto andK. Furuya,Jpn. J. Appl. Phys. 30(10A) (1991) L-1702.CrossRefGoogle Scholar
  12. 12.
    E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter andM. A. Koza,Appl. Phys. Lett. 60 (1992) 371.CrossRefGoogle Scholar
  13. 13.
    T. Sugino, Y. Sakamoto andJ. Shirafuji,Jpn. J. Appl. Phys. 32 (1993) L-239.Google Scholar
  14. 14.
    S. M. Sze, “Physics of semiconductor devices” 2nd. Edition (Wiley, New York, 1981).Google Scholar
  15. 15.
    S. T. Ali, A. Kumar andD. N. Bose, in IEEE Proceedings of the XVIIIth Annual Convention and Exhibition, Calcutta, November 1992.Google Scholar
  16. 16.
    S. T. Ali andD. N. Bose,Mater. Lett. 12 (1991) 388.CrossRefGoogle Scholar
  17. 17.
    G. Y. Robinson, in “Physics and chemistry of III-V semiconductors” edited by C. W. Wilmsen (Plenum Press, New York, 1985) p. 406.Google Scholar
  18. 18.
    M. Procop,J. Electron Spectroscopy Related Phenomenon 59 (1992) R-1.Google Scholar
  19. 19.
    D. Gallet andG. Hollinger,Appl. Phys. Lett. 62 (1993) 982.CrossRefGoogle Scholar
  20. 20.
    K. Sato, M. Sakata andH. Ikoma,Jpn. J. Appl. Phys. 32 (1993) 3354.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. T. Ali
    • 1
  • A. Kumar
    • 1
  • D. N. Bose
    • 1
  1. 1.Semiconductor Division, Materials Science CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations