Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 5020–5030 | Cite as

Magnetic resonance characterization of solid-state intermediates in the generation of ceramics by pyrolysis of hydridopolysilazane

  • R. H. Lewis
  • G. E. Maciel
Article

Abstract

Chemical intermediates produced from the pyrolysis of hydridopolysilazane (HPZ) were studied in the solid state by multinuclear nuclear magnetic resonance and electron spin resonance. When pyrolysed at temperatures of 1200°C, uncured HPZ forms a ceramic material with a composition of Si2.2N2.2C1.0. A series of HPZ-derived ceramics was produced using a number of different heat-treatment temperatures, varying between 300 and 1200°C. Solid-state magnetic resonance data generated from this set of HPZ-derived ceramics elucidate important features of this complex transformation. Silicon atoms initially exist in two types of sites in the polymer,
Si(Me)3 and (
)3SiH sites. Upon pyrolysis between 300 and 400°C, the silazane cyclizes and cross-links, forming an intractable, insoluble solid. Increasing the pyrolysis temperature to between 400 and 600°C creates a matrix that is partially inorganic; at heat-treatment temperatures in this range, many of the C-H bonds of the starting polymer are cleaved. Elevating the heat-treatment temperature to between 600 and 1200°C generates a series of chemical structures with silicon in a tetrahedral site of the general form SiN4−xCx, where x=0, 1, 2, 3, 4. No crystalline forms of Si3N4 or SiC were detected in the material prepared at even the highest heat-treatment temperature of 1200 °C.

Keywords

Silicon Nuclear Magnetic Resonance Pyrolysis Electron Spin Resonance Electron Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Seyferth, G. H. Wiseman andC. Prud'homme,J. Am. Ceram. Soc. 66 (1983) C13.CrossRefGoogle Scholar
  2. 2.
    D. Seyferth andG. H. Wiseman,Am. Chem. Soc. Polym. Div. Polym. Prepr. 27 (1987) 407.Google Scholar
  3. 3.
    H. R. Allcock andF. W. Lampe, “Contemporary Polymer Chemistry” (Prentice Hall, Englewood Cliffs, NJ, 1990).Google Scholar
  4. 4.
    K. A. Youngdahl, R. M. Laine, R. A. Kennish, T. R. Cronin andG. G. A. Belavoine,Mater. Res. Soc. Symp. Proc. 121 (1988) 489.CrossRefGoogle Scholar
  5. 5.
    R. Wills, R. A. Markle andS. P. Mukherjee,Ceram. Bull. 62 (1988) 905.Google Scholar
  6. 6.
    G. E. Legrow, T. F. Lim, J. Lipowitz andR. S. Reaoch,ibid. 66 (1987) 363.Google Scholar
  7. 7.
    J. P. Cannady, US Pat. 4540803.Google Scholar
  8. 8.
    Idem., US Pat. 453 5007.Google Scholar
  9. 9.
    G. R. Hatfield andK. R. Carduner,J. Mater. Sci. 24 (1989) 4209.CrossRefGoogle Scholar
  10. 10.
    G. T. Burns, J. A. Ewald andK. Mukherjee,ibid. 27 (1992) 3599.CrossRefGoogle Scholar
  11. 11.
    K. Su, E. E. Remsen, G. A. Zank andL. G. Sneddon, Chem. Mater.5 (1993) 547.CrossRefGoogle Scholar
  12. 12.
    H.-P. Baldus, W. Schick andJ. Lücke,Chem. Mater. 5 (1993) 845.CrossRefGoogle Scholar
  13. 13.
    T. N. Mitchell andR. Wickenkamp,J. Orgmet. Chem. 291 (1985) 179.CrossRefGoogle Scholar
  14. 14.
    B. Wrackmeyer andH. Zhou,Spectrochim. Acta 47A (1991) 849.CrossRefGoogle Scholar
  15. 15.
    M. Zhang andG. E. Maciel,Anal. Chem. 62 (1990) 633.CrossRefGoogle Scholar
  16. 16.
    G. E. Maciel, C. E. Bronnimann andB. L. Hawkins,Adv. Magn. Reson. 14 (1990) 125.CrossRefGoogle Scholar
  17. 17.
    D. P. Burum andW. K. Rhim,J. Chem. Phys. 71 (1979) 944.CrossRefGoogle Scholar
  18. 18.
    L. B. Alemany, D. M. Grant, T. D. Alger andR. J. Pugmire,J. Am. Chem. Soc. 105 (1983) 6697.CrossRefGoogle Scholar
  19. 19.
    T. Fjeldberg,J. Molec. Struct. 112 (1984) 159.CrossRefGoogle Scholar
  20. 20.
    R. K. Harris andB. J. Kimber,J. Magn. Reson. 17 (1975) 174.Google Scholar
  21. 21.
    D. W. Duff andG. E. Maciel,Macromolecules 23 (1990) 4367.CrossRefGoogle Scholar
  22. 22.
    Idem, ibid. 24 (1991) 651.CrossRefGoogle Scholar
  23. 23.
    H. Janke, G. Engelhardt, M. Magi andE. Lippma,Z. Chem. 13 (1973) 435.CrossRefGoogle Scholar
  24. 24.
    I. Chuang, D. R. Kinney, C. E. Bronnimann, R. C. Zeigler andG. E. Maciel,J. Phys. Chem. 96 (1992) 4028.CrossRefGoogle Scholar
  25. 25.
    E. Kupce, E. Lukevics, Y. M. Varezhkin, A. N. Mikhailova andV. D. Sheludyakov,Orgmet. 7 (1988) 1649.Google Scholar
  26. 26.
    R. R. Wills, R. A. Markle andS. P. Mukherjee,Ceram. Bull. 62 (1983) 904.Google Scholar
  27. 27.
    R. M. Laine, Y. D. Blum, D. Tse andR. Glaser, “ACS Symposium Series”, Vol. 36 (American Chemical Society, Washington, DC, 1988) Chs 10-13.Google Scholar
  28. 28.
    T. S. Hartman, M. F. Richardson, B. L. Sherriff andB. C. Winsborrow,J. Am. Chem. Soc. 109 (1987) 6059.CrossRefGoogle Scholar
  29. 29.
    G. W. Wagoner, B-K. Na andM. A. Varnuce,J. Phys. Chem. 93 (1989) 5061.CrossRefGoogle Scholar
  30. 30.
    J. R. Guth andW. T. Petusky,J. Phys. Chem. 91 (1987) 5361.CrossRefGoogle Scholar
  31. 31.
    C. Gerardin, F. Tavlelle andJ. Livage,J. Chim. Phys. 89 (1992) 461.CrossRefGoogle Scholar
  32. 32.
    K. R. Carduner, R. O. Carter III, M. E. Milberg andG. M. Crosbie,Anal. Chem. 59 (1987) 2794.CrossRefGoogle Scholar
  33. 33.
    A. C. Olivieri andG. R. Hatfield,J. Magn. Reson. 94 (1991) 535.Google Scholar
  34. 34.
    R. K. Harris andM. J. Leach,Chem. Mater. 2 (1990) 320.CrossRefGoogle Scholar
  35. 35.
    G. Wagoner,Phys. Rev. 118 (1960) 647.CrossRefGoogle Scholar
  36. 36.
    S. Mrozowski,Low. Temp. Phys. 35 (1979) 231.CrossRefGoogle Scholar
  37. 37.
    Idem, Carbon 26 (1988) 521.CrossRefGoogle Scholar
  38. 38.
    K. Kinoshita, “Carbon Electrochemical and Physicochemical Properties” (Wiley, New York, 1988) Ch. 8.Google Scholar
  39. 39.
    T. Shimizu, M. Kumeda andY. Kiriyama,Solid State Commun. 37 (1981) 699.CrossRefGoogle Scholar
  40. 40.
    A. Morimoto, T. Miura, M. Kumeda andT. Shimuizu,Jpn J. Appl. Phys. 21 (1982) L119.CrossRefGoogle Scholar
  41. 41.
    S. Dey, D. R. Torgeson andR. G. Bamis,Appl. Phys. Lett. 49 (1986) 17.CrossRefGoogle Scholar
  42. 42.
    G. K. Walters andT. L. Estle,J. Appl. Phys. 32 (1961) 1854.CrossRefGoogle Scholar
  43. 43.
    T. Shimizu,J. Non-Cryst. Solids 71 (1985) 145.CrossRefGoogle Scholar
  44. 44.
    Idem, ibid. 59 (1983) 117.CrossRefGoogle Scholar
  45. 45.
    J. S. Thorp andT. G. Bushell,J. Mater. Sci. Lett. 5 (1986) 1013.CrossRefGoogle Scholar
  46. 46.
    F. J. Dyson,Phys. Rev. 98 (1955) 349.CrossRefGoogle Scholar
  47. 47.
    G. Feher andA. F. Kip,ibid. 98 (1955) 337.CrossRefGoogle Scholar
  48. 48.
    J. M. Zeigler andF. W. Gordon Fearson, “Silicon Based Polymer Science: A Comprehensive Resource”, Advances in Chem. Series 224 (American Chemical Society, Washington, D.C, 1990) Ch. 10.Google Scholar
  49. 49.
    K. A. Andionov, V. V. Yastrebov, A. I. Chevnyshev, V. M. Koplylov andL. M. Khananashvili,Zh. Obshch. Khim. 34 (1969) 2513.Google Scholar
  50. 50.
    B. Rozondai, I. Hargittor, A. V. Golubinskii, L. V. Vilkov andV. S. Mastryukov,J. Molec. Struct. 28 (1975) 339.CrossRefGoogle Scholar
  51. 51.
    J. G. Hexem, M. H. Frey andS. J. Opella,J. Chem. Phys. 77 (1982) 3847.CrossRefGoogle Scholar
  52. 52.
    M. Mehring, “Principles at High Resolution NMR in Solids”, 2nd Edn (Springer, New York, 1983) pp. 80–3.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • R. H. Lewis
    • 1
  • G. E. Maciel
    • 1
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations