Journal of Materials Science

, Volume 30, Issue 19, pp 4994–5001 | Cite as

Effect of weak uniaxial loads on creep strain rate in high-porosity MgO compacts during early sintering stages

  • D. Beruto
  • M. Capurro
  • R. Novakovic
  • R. Botter


Creep phenomena accompanying the early stage of sintering of high-porosity MgO powder compacts were investigated with regard to the dependence of creep rate on the applied stress. This dependence was found to be non-linear, obeying a power law with an exponentn <1, in contrast with the behaviour of dense compacts which exhibit linear Nabarro-Herring creep under the same type of loading. The nature of the creep exponent, expected to be in relation to mechanisms of particle disconnection and rearrangement, frequently observed in a high-porosity compact during the early stage of neck formation, has been explored using an appropriate physico-mathematical model. The relevant point concerning high-porosity compacts is that, owing to the loosely packed microstructure, the necks must resist not only normal forces, but also bending moments. It is the action of such bending moments which is supposed to drive the particles rearrangement. In this framework, the nature of the creep exponent appears to be related mainly to the green density, but it is substantially constant with densification. The predictions of the model explain the experimental results forn <1 (high-porosity green compacts), with a smooth transition to the case ofn=1 (low-porosity green compacts).


Normal Force Creep Rate Creep Strain Smooth Transition Uniaxial Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. Rahaman andL. C. De Jonghe,J. Am. Ceram. Soc. 67 (1984) C-205.CrossRefGoogle Scholar
  2. 2.
    M. N. Rahaman, L. C. De Jonghe andR. J. Brook,ibid. 69 (1986) 53.CrossRefGoogle Scholar
  3. 3.
    M. N. Rahaman andL. C. De Jonghe,ibid. 70 (1987) 360.CrossRefGoogle Scholar
  4. 4.
    Idem, J. Mater. Sci. 22 (1987) 4326.CrossRefGoogle Scholar
  5. 5.
    L. C. De Jonghe andM. N. Rahaman,Acta Metall. 36 (1988) 223.CrossRefGoogle Scholar
  6. 6.
    M. N. Rahaman, L. C. De Jonghe andM. Y. Chu,J. Am. Ceram. Soc. 74 (1991) 514.CrossRefGoogle Scholar
  7. 7.
    M. Y. Chu, M. N. Rahaman, L. C. De Jonghe andR. J. Brook,ibid. 74 (1991) 1217.CrossRefGoogle Scholar
  8. 8.
    R. Raj,ibid. 69 (1986) 58.CrossRefGoogle Scholar
  9. 9.
    D. Beruto, A. W. Searcy, R. Botter andM. Giordani, to be published.Google Scholar
  10. 10.
    J. E. Bird, A. K. Mukherjee andJ. F. Dorn, in “Quantitative Relation Between Properties and Microstructure”, Haifa, Israel, 4 July–4 August, 1969 (Israel University Press, 1969) pp. 225–342.Google Scholar
  11. 11.
    S. L. Dole, S. Prochazka andH. Doremus,J. Am. Ceram. Soc. 72 (1989) 958.CrossRefGoogle Scholar
  12. 12.
    B. Wong andJ. A. Pask,J. Am. Ceram. Soc. 62 (1979) 141.CrossRefGoogle Scholar
  13. 13.
    D. Beruto, R. Botter andA. W. Searcy,J. Am. Ceram. Soc. 72 (1989) 232.CrossRefGoogle Scholar
  14. 14.
    Idem,, “The Influence of Thermal Cycling on Densification: Further Test of a Theory”, in “Ceramic Transactions”, Vol.1B, edited by G. L. Messing, E. R. Fuller and H. Hausner (American Ceramic Society, Columbus, OH, 1988).Google Scholar
  15. 15.
    Idem,, J. Am. Ceram. Soc.70 (1987) 155.CrossRefGoogle Scholar
  16. 16.
    M. Y. Chu, L. C. De Jonghe andM. N. Rahaman,Acta Metall. 37 (1989) 1415.CrossRefGoogle Scholar
  17. 17.
    R. L. Coble,J. Appl. Phys. 34 (1963) 1679.CrossRefGoogle Scholar
  18. 18.
    J. Weertman,ibid. 26 (1955) 1213.CrossRefGoogle Scholar
  19. 19.
    D. Beruto andM. Capurro,J. Mater. Sci. 28 (1993) 4693.CrossRefGoogle Scholar
  20. 20.
    S. P. Timoshenko andD. H. Young, “Theory of structures” (McGraw-Hill, New York, London, 1965).Google Scholar
  21. 21.
    R. Baldacci, “Scienza delle CostruzioniI” (UTET, Torino, 1970).Google Scholar
  22. 22.
    L. Landau andE. Lifchitz, “Théorie de l'élasticité”, (Mir, Moscow, 1967).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. Beruto
    • 1
    • 2
  • M. Capurro
    • 1
    • 2
  • R. Novakovic
    • 1
  • R. Botter
    • 1
    • 2
  1. 1.Inter-department Center of Materials Engineering (CIIM)University of GenoaGenoaItaly
  2. 2.Instituto di Ingegneria e Scienza del Materiali, Faculty of EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations