Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4950–4959 | Cite as

Preparation of YVO4 powder from the Y2O3 + V2O5 + H2O system by a hydrolysed colloid reaction (HCR) technique

  • Sandor Erdei
Article

Abstract

Prior to the formation of YVO4 in the Y2O3 + V2O5 + H2O system, two intermediate, partially hydrophobic, complex colloidal mixtures with metastable characteristics can be produced at room temperature and atmospheric pressure. The ball-milled system, having both hydrophobic and hydrophilic species, transforms into the stable yttrium orthovanadate phase due to intensive hydrolysis. At room temperature an orange mixture (possessing dispersed Y2O3 and 4Y2O3−P(OH) p p+ ·2VO 3 , Y2O3−p(OH) p p+ ·6VO 3 ·xH2O-like heteroaggregations) formed by 20 h mixing at pH ca. 4.0 transforms slowly, another red-brown heavily flocculated colloidal mixture (with dispersed Y2O3 and Y2O3−p(OH) p p+ ·V10O 28 6− ·yH2O-like aggregation) formed by 70 h mixing at pH ca. 4.5 transforms rapidly into YVO4 in water. During additional mixing of highly diluted red-brown mixtures this transformation can be completed at room temperature. At elevated temperatures (50–95 °C) the orange mixture precipitates into a red-brown decavanadate-type precipitatium which subsequently can also rapidly hydrolyse into an orthovanadate phase in the diluted aqueous systems. Both vanadium excess meta-and decavanadate-type aggregations exhibit amorphous character by X-ray diffraction.

The semi-hydrophobic colloidal structure can modify the dissociation mechanism, which prevents the system from returning to the starting oxides, and gives a new HCR technique for YVO4 preparation with a simple hydrolysis process at low temperatures and atmospheric pressure.

Keywords

Vanadium Yttrium Y2O3 V2O5 Hydrolysis Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Levine andF. C. Palilla,Appl. Phys. Lett. 5 (1964) 118.CrossRefGoogle Scholar
  2. 2.
    A. A. Fotiev B. V. Schulgin, A. S. Moskvin andF. F. Gabrilov, “Vanadievye kristallofosfory” (Uralskij Nauchnij Center, Akad, Nauk SSSR, Nauka-Moscow, (1976) (in Russian).Google Scholar
  3. 3.
    E. A. Maunders andL. G. Deshazer,J. Opt. Soc. 61 (1971) 684.Google Scholar
  4. 4.
    M. Bass,IEEE J. Quant. Electr. QE11 (1975) 938.CrossRefGoogle Scholar
  5. 5.
    J. R. O'Connor,Appl. Phys. Lett. 9 (1966) 407.CrossRefGoogle Scholar
  6. 6.
    R. A. Fields, M. Birnbaum andC. L. Fincher,Appl. Phys. Lett. 51 (1987) 1885.CrossRefGoogle Scholar
  7. 7.
    S. Killingbeck, PhD. thesis, University of Kansas, Lawrence, USA (1963).Google Scholar
  8. 8.
    S. Erdei andF. W. Ainger,J. Cryst. Growth 128 (1993) 1025.CrossRefGoogle Scholar
  9. 9.
    S. Erdei andF. W. Ainger, in “Mater. Res. Soc. Proc. 329” (Pittsburgh, PA, 1994), p 245.Google Scholar
  10. 10.
    S. Erdei,J. Cryst. Growth 134 (1993) 1.CrossRefGoogle Scholar
  11. 11.
    Performance Improvement of Miniature Cathode Ray Tubes. AAMRL-87-062, April 1988.Google Scholar
  12. 12.
    E. A. Arbit andV. V. Serebrennikov,Russ. J. Inorg. Chem. 10 (1965) 220.Google Scholar
  13. 13.
    V. S. Krylov, I. N. Popkov, R. L. Magunov, M. N. Puring, K. H. S. Bagdasarov, R. F. Zhagina andV. I. Popov, US Patent 3667901 (1972).Google Scholar
  14. 14.
    V. I. Popov, K. H. S. Bagdasarov, I. N. Buseva andM. V. Mokhosoev,Soviet Physics, Crystallogr. 13 (1969) 974.Google Scholar
  15. 15.
    R. C. Ropp andR. Oakley German Patent: 2056 172 (1971).Google Scholar
  16. 16.
    R. C. Ropp, US Patent: 3 580 861 (1971).Google Scholar
  17. 17.
    A. A. Ivakin andA. A. Fotiev, “Chemistry of pentavalent vanadium in aqueous solution”. (Uralskij Nauchnij Center Akad. Nauk SSSR, Trudi Instituta Chem. 24, Sverdlovsk, 1972) (in Russian).Google Scholar
  18. 18.
    R. C. Ropp andB. Carroll,J. Inorg. Nucl. Chem. 39 (1977) 1303.CrossRefGoogle Scholar
  19. 19.
    A. P. Nakhodnova andL. V. Zaslavskaya,Russ. J. Inorg. Chem. 27 (1982) 378.Google Scholar
  20. 20.
    L. V. Zaslavskaya, A. P. Nakhodnova andV. G. Pitsynga,ibid. 28 (1983) 358.Google Scholar
  21. 21.
    A. P. Nakhodnova andL. V. Zaslavskaya,ibid. 29 (1984) 835.Google Scholar
  22. 22.
    L. V. Zaslavskaya andA. P. Nakhodnova,ibid. 32 (1987) 191.Google Scholar
  23. 23.
    O. Yamaguchi, Y. Mukaida, H. Shigeta, H. Takemura andM. Yamashita,Mater. Lett. 7 (1988) 158.CrossRefGoogle Scholar
  24. 24.
    G. Rigotti, G. Punte, B. E. Rivero, M. E. Escobar andE. F. Baran,J. Inorg. Nucl. Chem. 43 (1981) 2811.CrossRefGoogle Scholar
  25. 25.
    Powder Diffraction File, Joint Committee on Powder Diffraction Standards, Swarthmore, PA (1991).Google Scholar
  26. 26.
    J. S. Laskowski andJ. Ralson, “Colloid chemistry in mineral processing” (Elsevier Amsterdam, 1992).Google Scholar
  27. 27.
    H. T. S. Britton,J. Chem. Soc. (1934) 1842.Google Scholar
  28. 28.
    H. T. S. Britton andG. Welford,ibid. (1940) 764.Google Scholar
  29. 29.
    F. Chauveau,Bull. Soc. Chim. France 5 (1960) 810.Google Scholar
  30. 30.
    S. Erdei, F. W. Ainger andL. E. Cross, Preparation of YVO4 from V2O5 + Y2O3 aqueous solution (patent is being applied PSU Inv. Disc. No. 92-1181) 1992.Google Scholar
  31. 31.
    L. P. Ducret,Ann. Chim, France 6 (1951) 705.Google Scholar
  32. 32.
    D. Dyrssen andT. Sekin,Acta Chem. Scand. 15 (1961) 1399.CrossRefGoogle Scholar
  33. 33.
    Idem.:J. Inorg. Nucl. Chem. 26 (1964) 981.CrossRefGoogle Scholar
  34. 34.
    K. B. Jacimirskij andV. J. Kalinina,J. Inorg. Chem. (Russian)9 (1964) 1117.Google Scholar
  35. 35.
    K. Schiller andE. Thilo,Z. Anorg. Allg. Chem. 310 (1961) 261.CrossRefGoogle Scholar
  36. 36.
    G. Schwarzenbach andG. Geier,Helv. Chim. Acta. 46 (1963) 906.CrossRefGoogle Scholar
  37. 37.
    F. J. C. Rossotti andH. Rossotti,Acta Chem. Scand. 10 (1956) 957.CrossRefGoogle Scholar
  38. 38.
    L. Newman andR. Quinlan,J. Am. Chem. Soc. 81 (1959) 547.CrossRefGoogle Scholar
  39. 39.
    Yu. I. Sannikov, V. L. Zolotavin andI. Ya. Bezrukov,J. Inorg. Chem. (Russian)8 (1963) 923.Google Scholar
  40. 40.
    N. Ingri andF. Brito,Acta Chem. Scand. 13 (1959) 1971.CrossRefGoogle Scholar
  41. 41.
    F. Britto andN. Ingri,Ann. Soc. Esp. Fis. Qim. 56B (1960) 165.Google Scholar
  42. 42.
    D. L. Kepert, in “Isopolanions and heteropolyanions. Comprehensive inorganic chemistry I”, edited by J. C. Bailaret al. (Pergamon Press, 1973).Google Scholar
  43. 43.
    R. J. Hunter, “Foundations of colloid science” (Clarendon Press, Oxford, 1987).Google Scholar
  44. 44.
    S. Erdei, F. W. Ainger, L. E. Cross andW. B. White,Mater. Lett. 21 (1994) 143.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Sandor Erdei
    • 1
  1. 1.Intercollege Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations