Journal of Materials Science

, Volume 30, Issue 19, pp 4930–4935 | Cite as

Structural and Raman analyses of the (A1−xPbx) TiO3(A=Ca, Sr, Ba) perovskites

  • N. Calos
  • J. Forrester
  • T. J. White
  • P. R. Graves
  • S. Myhra


Powder X-ray diffraction and laser Raman spectroscopy were used to study systematically the structural and dynamical changes in three series of plumbous perovskites of composition Ba1−xPbxTiO3Sr1−xPbxTiO3 and Ca1−xPbxTiO3 with 0 <x < 1. For the latter two series prominent phase transitions were found atx ca. 0.5 and 0.55, respectively. As well, Raman spectroscopy provided the means to track the evolution of active vibrational modes characteristic of the end-members across the doping range. The temperature dependence of the Raman spectra showed that the ferroelectric transition temperature of the (Ca, Pb) series can be tailored over a wide temperature range by judicious doping.


Polymer Spectroscopy Phase Transition Transition Temperature Perovskite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Navrotsky andD. J. Weidner (Eds.) “Perovskite: A structure of great interest in geophysics and materials science”. Geophysics Monograph 45 (American Geophysical Union, Washington DC, 1989).Google Scholar
  2. 2.
    P. McMillan andN. Ross,Phys. Chem. Minerals 16 (1988) 21.CrossRefGoogle Scholar
  3. 3.
    R. J. Hill andI. C. Madsen,Powder Diffraction 2 (1987) 146.CrossRefGoogle Scholar
  4. 4.
    D. B. Wiles andR. A. Young,J. Appl. Crystallogr. 14 (1981) 149.CrossRefGoogle Scholar
  5. 5.
    R. J. Hill andC. J. Howard,ibid. 18 (1985) 173.CrossRefGoogle Scholar
  6. 6.
    G. Caglioti, A. Paoletti andF. P. Ricci,Nucl. Instrum. 3 (1958) 223.CrossRefGoogle Scholar
  7. 7.
    D. J. Gardiner, M. Bowden andP. R. Graves,Phil. Trans. Roy. Soc. Lond. A320 (1986) 295.CrossRefGoogle Scholar
  8. 8.
    P. R. Graves, S. Myhra, K. Hawkins andT. J. White,Physica C 181 (1991) 265.CrossRefGoogle Scholar
  9. 9.
    F. S. Galasso, “Perovskites and high Tc superconductors” (Gordon and Breach, New York, 1990).Google Scholar
  10. 10.
    W. G. Nilsen andJ. G. Skinner,J. Chem. Phys. 48 (1968) 2240.CrossRefGoogle Scholar
  11. 11.
    R. Migoni, H. Bilz andD. Bauerle,Phys. Rev. Lett. 37 (1977) 1155.CrossRefGoogle Scholar
  12. 12.
    W. G. Fateley, F. R. Dollish, N. T. McDevitt andF. F. Bentley, “Infrared and Raman selection rules for molecular and lattice vibrations: The correlation method” (Wiley-Interscience, 1972).Google Scholar
  13. 13.
    U. Balachandran andN. G. Eror,Solid State Commun. 44 (1982) 815.CrossRefGoogle Scholar
  14. 14.
    Idem., Commun. Am. Ceram. Soc. (1982)C54.Google Scholar
  15. 15.
    M. D. Fontana, H. Idrissi, G. E. Kugel andK. Wojcik,J. Phys. Condens. Matter 3 (1991) 8695.CrossRefGoogle Scholar
  16. 16.
    S. Li, R. A. Condrate andR. M. Spriggs,Spectrosc. Lett. 21 (1988) 969.CrossRefGoogle Scholar
  17. 17.
    A. Scalabrin, A. S. Chaves, D. S. Shin andS. P. S. Porto,Phys. Status. Solidi (b)79 (1977) 731.CrossRefGoogle Scholar
  18. 18.
    A. Pinczuk, E. Burstein andS. Ushiola,Solid State Commun. 7 (1973) 139.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • N. Calos
    • 1
  • J. Forrester
    • 1
    • 3
  • T. J. White
    • 1
    • 4
  • P. R. Graves
    • 2
  • S. Myhra
    • 2
    • 5
  1. 1.Centre for Microscopy and MicroanalysisQueensland UniversitySt LuciaAustralia
  2. 2.AEA TechnologyOxfordshireUK
  3. 3.Department of Mining and Metallurgical EngineeringQueensland UniversitySt. LuciaAustralia
  4. 4.Ian Wark Research InstituteUniversity of South AustraliaIngle FarmAustralia
  5. 5.Faculty of Science and TechnologyGriffith UniversityNathanAustralia

Personalised recommendations