Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4926–4929 | Cite as

Intercalation in hydrotalcite-like layered Zn/Al-double hydroxides with naphthalenedisulphonates

  • E. Kanezaki
Article

Abstract

Hydrotalcite-like layered Zn/Al-double hydroxides (Zn/Al-HTs) with one of three naphthalenedisulphonates (NijDSs) as an interlayer guest dianion, were obtained as precipitates from weak alkaline solutions of NijDS admixed with calcined host powder. Two values of interplanar spacing were observed in the powder X-ray diffraction patterns of NijDS-intercalated Zn/Al-HTs with two guest isomers. Intercalated materials have been characterized by means of UV-vis diffuse reflectance spectroscopy, differential thermal analysis/thermogravimetry and X-ray photoelectron spectroscopy. A model has been proposed in which the organic dianion at the interlayer gallery region bridges two Al3+ cations in neighbouring layers of double hydroxides. The guest molecules have an orientation perpendicular to the internal surface of the layers for all NijDS-intercalated materials. Another orientation has been suggested in which the molecules tilt from the perpendicular position for two isomers of NijDS.

Keywords

Hydroxide Diffuse Reflectance Internal Surface Guest Molecule Interplanar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Cavani, F. Trifiro andA. Vaccari,Catalysis Today 11 (1991) 173.CrossRefGoogle Scholar
  2. 2.
    W. T. Reichle,Solid State Ionics 22 (1986) 135;CHEMTECH (1986) 58.CrossRefGoogle Scholar
  3. 3.
    S. Miyata,Clays Clay Miner. 23 (1975) 369.CrossRefGoogle Scholar
  4. 4.
    M. A. Drezdzon,Inorg. Chem. 27 (1988) 4628.CrossRefGoogle Scholar
  5. 5.
    A. C. Clearfield, M. Kieke, J. Kwan, J. L. Colon andR.-C. Wang,J. Ince. Phenomen. Molec. Recog. Chem. 11 (1991) 361.CrossRefGoogle Scholar
  6. 6.
    T. Yamagishi, Y. Ooyagi andE. Narita,Nippon Kagaku Kaishi (1993) 329.Google Scholar
  7. 7.
    A. Bhattacharyya andD. B. Hall,Inorg. Chem. 31 (1992) 3869.CrossRefGoogle Scholar
  8. 8.
    T. Kwon, G. A. Tsigdinos andT. J. Pinnavaia,J. Am. Chem. Soc. 110 (1988) 3653.CrossRefGoogle Scholar
  9. 9.
    E. Kanezaki, K. Kinugawa andY. Ishikawa,Chem. Phys. Lett. 226 (1994) 325.CrossRefGoogle Scholar
  10. 10.
    E. Narita, T. Yamagishi andK. Suzuki,Nippon Kagaku Kaishi (1992) 676.Google Scholar
  11. 11.
    K. Chibwe andW. Jones,J. Chem. Soc. Chem. Commun. (1989) 926.Google Scholar
  12. 12.
    I. Y. Park, K. Kuroda andC. Kato,Chem. Lett. (1989) 2057.Google Scholar
  13. 13.
    P. K. Dutta andM. Puri,J. Phys. Chem. 93 (1989) 376.CrossRefGoogle Scholar
  14. 14.
    E. Kanezaki, T. Sakamoto, A. Ookubo andK. Ooi,J. Chem. Soc. Farad. Trans. 88 (1992) 3583.CrossRefGoogle Scholar
  15. 15.
    Idem, J. Mater. Sci. Lett. 12 (1993) 669.CrossRefGoogle Scholar
  16. 16.
    MOPAC ver. 5.00 (QCPE No. 445),J. J. P. Stewart,QCPE Bull. 9 (1989) 10.Google Scholar
  17. 17.
    T. Hirano,JCPE Newsletter 1 (1989) 36; revised as ver. 5.01 byJ. Toyata for Apple Macintosh.Google Scholar
  18. 18.
    D. W. J. Cruickshank andR. A. Sparks,Proc. R. Soc. (Lond.) A258 (1960) 270.Google Scholar
  19. 19.
    A. Streitwieser Jr, “Molecular orbital theory for organic chemist” (Wiley, New York, 1961) Ch. 8.Google Scholar
  20. 20.
    D. D. Elleman andD. Williams,J. Chem. Phys. 25 (1956) 742.CrossRefGoogle Scholar
  21. 21.
    V. R. Allmann,Chimia 24 (1970) 99.Google Scholar
  22. 22.
    Idem, Acta Crystallogr. B 24 (1968) 972.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • E. Kanezaki
    • 1
  1. 1.Department of Chemical Science and Technology, Faculty of EngineeringThe University of TokushimaTokushimaJapan

Personalised recommendations