Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4906–4911 | Cite as

Deformation mechanism map for creep in YBa2Cu3O7−x

  • J. Yun
  • M. P. Harmer
  • Y. T. Chou
Article

Abstract

A deformation mechanism map with grain size and stress as variables was constructed for creep in YBa2Cu3O7−xat 850 and 950 °C. Theoretical models of Nabarro-Herring, Coble, and power-law creep were used for the construction. The values of various physical constants for creep of YBa2Cu3O7−x were taken from the literature, or estimated with appropriate assumptions. The constructed map showed that the Nabarro-Herring creep would dominate at high temperatures in the practical range of grain size and stress, and that the power-law creep would occur at large stress (> 1 GPa) and grain size. A review of previous creep studies showed that the map is in close agreement with the experimental results. Discrepancies in the values of stress exponent and activation energy for creep of YBa2Cu3O7−x given in the literature are explained by the use of the constructed map.

Keywords

Polymer Grain Size Activation Energy Theoretical Model Close Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Ashby,Acta Metall. 20 (1972) 887.CrossRefGoogle Scholar
  2. 2.
    F. A. Mohamed andT. G. Langdon,Metall. Trans. 5 (1974) 2339.CrossRefGoogle Scholar
  3. 3.
    M. R. Notis, in “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum, New York, 1975) p. 1.Google Scholar
  4. 4.
    A. W. Stumberg, N. Chen, K. C. Goretta andJ. L. Routbort,J. Appl. Phys. 66 (1989) 2079.CrossRefGoogle Scholar
  5. 5.
    K. C. Goretta, J. L. Routbort, A. C. Biondo, Y. Gao, A. R. Arellano-Lopez andA. Dominguez-Rodriguez,J. Mater. Res. 5 (1990) 2766.CrossRefGoogle Scholar
  6. 6.
    P. E. Reyes-Morel, X. Wu andI.-W. Chen, in “Ceramic Superconductors II”, edited by M. F. Yan (American Ceramic Society, Westerville, Oh, 1988) p. 590.Google Scholar
  7. 7.
    G. Bussod, A. Pechenik, C. Chu andB. Dunn,J. Am. Ceram. Soc. 72 (1989) 137.CrossRefGoogle Scholar
  8. 8.
    Y. Kodama andF. Wakai, in “Advances in Superconductivity II”, edited by T. Ishiguro and K. Kajimura (Springer, Tokyo, 1989) p. 113.Google Scholar
  9. 9.
    J. C. Borofka, B. C. Hendrix, A. I. Attarwala andJ. K. Tien,J. Am. Ceram. Soc. 76 (1993) 1011.CrossRefGoogle Scholar
  10. 10.
    N. Chen, S. J. Rothman andJ. L. Routbort,J. Mater. Res. 7 (1992) 2308.CrossRefGoogle Scholar
  11. 11.
    S. Nakahara, S. Jin, R. C. Sherwood andT. H. Tiefel,Appl. Phys. Lett. 54 (1989) 1926.CrossRefGoogle Scholar
  12. 12.
    T. G. Langdon andF. A. Mohamed,J. Mater. Sci. 11 (1976) 317.CrossRefGoogle Scholar
  13. 13.
    J. Jiang, H. Yin, X. Wang, Y. Sun, F. Zeng andJ. Du,Mater. Sci. Eng. B7 (1990) 227.CrossRefGoogle Scholar
  14. 14.
    G. Mader, H. Meixner andP. Kleinschmidt,J. Appl. Phys. 58 (1985) 702.CrossRefGoogle Scholar
  15. 15.
    I. V. Aleksandrov, A. F. Goncharov andS. M. Stishov,JETP Lett. 47 (1988) 428.Google Scholar
  16. 16.
    H. Ledbetter andM. Lei,J. Mater. Res. 6 (1991) 2253.CrossRefGoogle Scholar
  17. 17.
    D. Gupta, S. L. Shinde, andR. B. Laibowitz, in “High Temperature Superconducting Compounds II”, edited by S. H. Whang, A. DasGupta, and R. B. Laibowitz (Minerals, Metals and Materials Society, Warrendale, Pa, 1990) p. 377.Google Scholar
  18. 18.
    J. L. Routbort, S. J. Rothman, N. Chen, J. N. Mundy andJ. E. Baker,Phys. Rev. B. 43 (1991) 5489.CrossRefGoogle Scholar
  19. 19.
    K. N. Tu, N. C. Yeh, S. I. Park andC. C. Tsuei,Ibid. 39 (1989) 304.CrossRefGoogle Scholar
  20. 20.
    J. L. Tallon andM. P. Staines,J. Appl. Phys. 68 (1990) 3998.CrossRefGoogle Scholar
  21. 21.
    J. Yun, M. P. Harmer andY. T. Chou,Script. Metall. Mater. 29 (1993) 267.CrossRefGoogle Scholar
  22. 22.
    J. Yun, Ph.D. dissertation, Lehigh University, Bethlehm, PA (1994).Google Scholar
  23. 23.
    I. Kaur andW. Gust, in “Handbook of Grain and Interphase Boundary Diffusion Data”, Vols 1 and 2 (Ziegler Press, Stuttgart, 1989).Google Scholar
  24. 24.
    A. H. Chokshi andT. G. Langdon,Mater. Sci. Technol. 7 (1991) 577.CrossRefGoogle Scholar
  25. 25.
    R. L. Stocker andM. F. Ashby,Script. Metall. 7 (1973) 115.CrossRefGoogle Scholar
  26. 26.
    P. G. Shewmon, “Diffusion in Solids” (McGraw-Hill, New York, 1963) Chs. 6–2.Google Scholar
  27. 27.
    M. J. Kramer, L. S. Chumbley andR. W. McCallum,J. Mater. Sci. 25 (1990) 1978.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Yun
    • 1
  • M. P. Harmer
    • 1
  • Y. T. Chou
    • 1
  1. 1.Department of Materials Science and Engineering and Materials Research CenterLehigh UniversityBethlehemUSA

Personalised recommendations