Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4901–4905 | Cite as

A model for the structural hysteresis in poling and thermal depoling of PZT ceramics

  • H. H. Law
  • P. L. Rossiter
  • G. P. Simon
  • J. Unsworth
Article

Abstract

A structural hysteresis associated with domain orientation during poling and thermal depoling of lead titanate zirconate (PZT) ceramics has been observed. The poled materials appear to lose their piezoelectric properties at a temperature somewhat below the Curie temperature and yet the domain configurations remain unchanged. The above phenomenon is successfully explained by a model which predicts that upon thermal depolarization, poled ceramics undergo transformation from the poled state into the antiferroelectric state before returning back to their original unpoled state.

Keywords

Polymer Zirconate Titanate Curie Temperature Piezoelectric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Berengier andA. Roure,J. Appl. Phys. 30 (1959) 1804.CrossRefGoogle Scholar
  2. 2.
    Y.S. Ng andA.D. McDonald,Ferroelectrics 62 (1985) 167.CrossRefGoogle Scholar
  3. 3.
    K. F. Schoch, Jr, D.P. Partlow andR.F. Krause,Ibid. 77 (1988) 39.CrossRefGoogle Scholar
  4. 4.
    D. Waller, T. Iqbal andA. Safari,J. Amer. Ceram. Soc. 72 (1989) 322.CrossRefGoogle Scholar
  5. 5.
    M. Lee, A. Halliyal andR.E. Newnham,Ibid. 72 (1989) 986.CrossRefGoogle Scholar
  6. 6.
    K. A. Hanner, A. Safari, R. E. Newnham andJ. Rent,Ferroelectrics 102 (1990) 259.CrossRefGoogle Scholar
  7. 7.
    B. Jaffe, “Piezoelectric ceramics” (Academic Press Inc., London, 1971) p. 167.Google Scholar
  8. 8.
    V. Ionescu, V. Vasilescu andA. Cionca, in Proceedings of the World Congress on High Tech Ceramics, the 6th International Meeting on Modem Ceramics Technologies (6th CIMTEC), Italy, 1986, edited by P. Vincenzini (Elsevier Science, Amsterdam, 1987) p. 1655.Google Scholar
  9. 9.
    W. R. Cook, Jr, D. A. Berlincourt andF. J. Scholz,J. Appl. Phys. 34 (1963) 1392.CrossRefGoogle Scholar
  10. 10.
    K. Uchino andK. Oh,J. Amer. Ceram. Soc. 74 (1991) 933.Google Scholar
  11. 11.
    K. Kakegawa, J. Mohri, S. Shirasaka andK. Takahashi Ibid. 65 (1982) 515.CrossRefGoogle Scholar
  12. 12.
    S. Stotz,Ferroelectrics 76 (1987) 123.CrossRefGoogle Scholar
  13. 13.
    V. A. Isupov,Phys. Rev. 82 (1951) 729.CrossRefGoogle Scholar
  14. 14.
    C. Cheon andH. Kim,Ferroelectrics 92 (1991) 227.Google Scholar
  15. 15.
    P. J. Bryant, in “Ceramics: adding the value”, Vol. 1, edited by M.J. Bannister (CSIRO Pul, Melbourne, 1992) p. 434.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • H. H. Law
    • 1
  • P. L. Rossiter
    • 2
  • G. P. Simon
    • 2
  • J. Unsworth
    • 3
  1. 1.INC Corporation Pty LtdOakleigh SouthAustralia
  2. 2.Department of Materials EngineeringMonash UniversityClaytonAustralia
  3. 3.Department of Materials ScienceUniversity of TechnologySydneyAustralia

Personalised recommendations