Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4896–4900 | Cite as

Investigations related to the incorporation of Ca2+ ions into the BaTiO3 lattice

  • D. Völtzke
  • H -P. Abicht
Article

Abstract

Dependence of the composition of (100−x) BaTiO3 +xCaTiSiO5 precursor (x = 2–16 mol%) mixtures on calcination temperature was investigated by means of X-ray diffraction and differential scanning calorimetry. The formation of a secondary phase, fresnoite (Ba2TiSi2O8), starts at about 900 °C. The resulting Ba and O vacancies and the produced microstress stabilize the pseudocubic phase of BaTiO3 at room temperature. Temperatures higher than 1200 °C are necessary to incorporate Ca ions into the BaTiO3 crystals forming (Ba, Ca) TiO3 solid solutions. As a result the lattice becomes free of tension and the BaTiO3 based ceramics transform into thermodynamically stable tetragonal phases at room temperature.

Keywords

Polymer Solid Solution Differential Scanning Calorimetry Calcination Calorimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kolar andM. Trontelj, in “Sintering 85, Proceedings of the Sixth World Round Table Conference on Sintering”, Herceg-Novi 1985, edited by G.C. Kuczynski, D.P. Uskovic, H. Palmour III and M.M. Ristic (Plenum Press, New York, 1987).Google Scholar
  2. 2.
    H-P. Abicht, H. T. Langhammer andK-H. Felgner,J. Mater. Sci. 26 (1991) 2337.CrossRefGoogle Scholar
  3. 3.
    V.S. Tiwari, D. Pandey andP. Groves,J. Phys. D. Appl. Phys. 22 (1989) 837.CrossRefGoogle Scholar
  4. 4.
    D. Völtzke, H-P. Abicht, T. Müller andJ. Richter,Silikattechnik 41 (1990) 306.Google Scholar
  5. 5.
    M. Mitsui andW. B. Westphal,Physical Rev. 124 (1961) 1354.CrossRefGoogle Scholar
  6. 6.
    P. Murugaraj andT. R. N. Kutty,Mater. Res. Bull. 20 (1985) 1473.CrossRefGoogle Scholar
  7. 7.
    C. A. Kleint, U. Stöpel andA. Rost,Phys. Status. Solidi A 115 (1989) 165.CrossRefGoogle Scholar
  8. 8.
    D. A. Anderson, J. H. Adair, D. Miller, J. V. Biggers andT. R. Shrout, in “Ceramic Transactions 1: Ceramic Powder Science II”, edited by G. L. Messing, E. R. Fuller and H. Hausner (American Ceramic Society; Westerville, Oh, (1988) p. 485.Google Scholar
  9. 9.
    D. Kolar andV. Krasevec,J. Amer. Ceram. Soc. 71 (1988) C426.CrossRefGoogle Scholar
  10. 10.
    M. Ceh, V. Krasevec, D. Kolar andA. Meden,Mater. Sci. Forum 94–96 (1992) 885.CrossRefGoogle Scholar
  11. 11.
    A. Meden andM. Ceh,Powder Diffraction 7 (1992) 169.CrossRefGoogle Scholar
  12. 12.
    Landolt-Börnstein, “Neue Serie III, Bd. 16a” (Springer-Verlag, Berlin, 1981) p. 72, Table 42.Google Scholar
  13. 13.
    J. M. Criado, M. J. Dianez, F. Gotor, C. Real, M. Mundi andS. Ramos,Ferroelec., Lett. Sect. 14 (1992) 79.CrossRefGoogle Scholar
  14. 14.
    D. Völtzke, T. Müller, H-P. Abicht andD. Freude,Silikattechnik 42 (1991) 313.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • D. Völtzke
    • 1
  • H -P. Abicht
    • 1
  1. 1.Fachbereich Chemie der Martin-Luther-UniversitätHalle/SaaleGermany

Personalised recommendations