Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4852–4856 | Cite as

Simulation of ionic crystals: calculation of Madelung potentials for stabilized zirconia

  • J. Andrés
  • A. Beltrán
  • V. Moliner
  • E. Longo
Article

Abstract

By assuming complete ionicity, a theoretical study of structure and energetics in zirconias stabilized by the addition of Y2O3 or MgO, has been reported. The simulation was carried out using the Ewald summation technique. The results indicate that the cubic structures of these ionic crystals are metastable and they transform without an energy barrier to a pseudomonoclinic or tetragonal structure.

Keywords

Polymer Zirconia Energy Barrier Y2O3 Tetragonal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Hyde andS. Anderson, “Inorganic crystal structures” (Wiley, New York, 1988).Google Scholar
  2. 2.
    D. Stell andB. E. F. Fender,J. Phys. C 7 (1974) 1.CrossRefGoogle Scholar
  3. 3.
    J. Faber Jr., M. H. Mueller andB. R. Cooper,Phys. Rev. B17 (1978) 4884.CrossRefGoogle Scholar
  4. 4.
    M. Morinaga, J. B. Cohen andJ. Faber Jr,Acta Crystallogr. A35 (1979) 789.CrossRefGoogle Scholar
  5. 5.
    R. E. Carter andW. L. Roth, “EMF measurement in high temperature systems” (The Institute of Mining and Metallurgy, New York, 1968) p. 125.Google Scholar
  6. 6.
    H. Hiroyuki, A. J. Schultz, P. Leung andJ. M. Williams,Acta Crystallogr. B40 (1984) 367.Google Scholar
  7. 7.
    E. Francisco, V. Luaña, J. M. Recio andL. Pueyo,J. Chem. Ed. 65 (1988) 6.CrossRefGoogle Scholar
  8. 8.
    E. L. Burrow andS. F. A. Kettle,ibid. 52 (1975) 58.CrossRefGoogle Scholar
  9. 9.
    M. P. Tosi, “Solid state physics: advances in research and applications”, Vol. 16, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1956).Google Scholar
  10. 10.
    P. P. Ewald,Ann Phys. 64 (1921) 253. A mathematical and physical description of this method has been reported by C. Kittel in “Introduction to solid state physics”, Appendix A (Wiley, New York, 1956).CrossRefGoogle Scholar
  11. 11.
    M. P. Allen andD. J. Tildesley, “Computer simulation of liquids” (Clareton Press, Oxford, 1989).Google Scholar
  12. 12.
    A. G. Piken andW. Van Gool, Ford Technical Report SL, 68 (1968) 10.Google Scholar
  13. 13.
    L. Pueyo andJ. W. Richardson,J. Chem. Phys. 67 (1977) 3583.CrossRefGoogle Scholar
  14. 14.
    A. Beltran, J. Andres andV. Moliner,J. Chem. Ed. (1994) submitted.Google Scholar
  15. 15.
    C. J. Howard, R. J. Hill andB. E. Reichert,Acta Crystallogr. B44 (1988) 116.CrossRefGoogle Scholar
  16. 16.
    G. Monrós, J. Carda, M. A. Tena, P. Escribano andJ. Alarcón,J. Mater. Sci. 27 (1992) 351.CrossRefGoogle Scholar
  17. 17.
    Idem,,Br. Ceram Trans. 90 (1991) 157.Google Scholar
  18. 18.
    P. Vieillard,Acta Crystallogr. B43 (1987) 513.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • J. Andrés
    • 1
  • A. Beltrán
    • 1
  • V. Moliner
    • 1
  • E. Longo
    • 2
  1. 1.Department of Experimental SciencesJaume I Universitat de CastellóCastellóSpain
  2. 2.Department of ChemistryFederal University of Sao CarlosSao CarlosBrazil

Personalised recommendations