Journal of Materials Science

, Volume 30, Issue 19, pp 4823–4833 | Cite as

Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminium castings

  • A. M. Samuel
  • F. H. Samuel


An experimental investigation of the tensile properties of endchill castings of 319.2 commercial aluminium alloy was carried out to determine the effect of Sr modifier, TiB2 grain refiner and hydrogen content, and the resulting porosity on these properties. It was found that with respect to solidification time, the interaction effect of other parameters on the porosity followed the order H2 > Sr > TiB2. Pore nucleation and pore morphology were solidification time-dependent, with Sr addition enhancing the sphericity of the pores. Both ultimate tensile strength (UTS) and ductility were sensitive to variations in porosity and solidification conditions, while the yield strength remained practically unaffected. Increase in the porosity volume fraction above 0.5% reduced the ductility to negligible levels in the unmodified, non-grain refined base alloy. It was also observed that Sr modification and grain refining allow for an increase in the porosity level before the same level of degradation in ductility is reached.


Porosity Ductility Yield Strength Aluminium Alloy Tensile Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Spear andG. R. Gardner,AFS Trans. 71 (1963) 209.Google Scholar
  2. 2.
    S. E. Frederick andW. A. Bailey,Trans. AIME 242 (1968) 2063.Google Scholar
  3. 3.
    J. F. Major, A. Makinde, P. D. Lee, B. Chamberlain, T. Scappaticci andD. Richman, in International Congress and Exposition on Vehicle Suspension System Advancements, Detroit, Michigan, February 28–March 3, 1994 (SAE International, Warrendale, PA, 1994), p. 117.Google Scholar
  4. 4.
    K. Radhakrishna, S. Seshan andM. R. Seshadri,Trans. Indian Inst. Metals 34 (1981) 169.Google Scholar
  5. 5.
    E. N. Pan, C. S. Lin andC. R. Loper, Jr.,AFS Trans. 98 (1990) 735.Google Scholar
  6. 6.
    K. E. Tynelius, Ph.D. Thesis, Drexel University, Philadelphia, 1992.Google Scholar
  7. 7.
    F. T. Lee, J. F. Major andF. H. Samuel,Metall. Mater. Trans. A 26A (1994) 1553.Google Scholar
  8. 8.
    “Fundamentals of Solidification”, edited byW. Kurz andD. J. Fischer, Trans. Tech. Publications Ltd., Aedermannsdorf, Switzerland, 3rd Edition, 1989.Google Scholar
  9. 9.
    P. S. Mohanty, F. H. Samuel andJ. E. Gruzleski,103 AFS Trans. (1995) in press.Google Scholar
  10. 10.
    S. Shivkumar, L. Wang andR. Lavigne, inLight Metals 1993, edited by S.K. Das (The Minerals, Metals and Materials Society, Warrendale, PA, 1993). pp. 829–838.Google Scholar
  11. 11.
    K. Tynelius, J. F. Major andD. Apelian,AFS Trans. 101 (1993) 401.Google Scholar
  12. 12.
    A. M. Samuel andF. H. Samuel,J. Mater. Sci. 27 (1992) 6533.CrossRefGoogle Scholar
  13. 13.
    F. Paray andJ. E. Gruzleski,Cast Metals 5 (1993) 187.CrossRefGoogle Scholar
  14. 14.
    B. Closset andJ. E. Gruzleski,Metall. Trans. A 13A (1982) 945.CrossRefGoogle Scholar
  15. 15.
    M. Tsukuda, T. Suzuki, I. Fukui andM. Harada,J. Jap. Inst. Metals 20 (1979) 437.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. M. Samuel
    • 1
  • F. H. Samuel
    • 1
  1. 1.Département des Sciences AppliquéesUniversité du Québec a ChicoutimiChicoutimiCanada

Personalised recommendations