Advertisement

Journal of Materials Science

, Volume 30, Issue 19, pp 4801–4816 | Cite as

Chemical diffusion in non-stoichiometric metal sulphides

  • S. Mrowec
  • K. Hashimoto
Article

Abstract

Transport properties of transition metal sulphides have been discussed in terms of chemical and self-diffusion coefficients. It has been shown that in the case of highly non-stoichiometric sulphides (Co1−yS) the chemical diffusion coefficient may easily be obtained from thermogravimetric measurements of re-equilibration kinetics. If the non-stoichiometry and thereby defect concentration is low (Mn1−yS), the re-equilibration kinetics is difficult or impossible to follow thermogravimetrically, and the electrical conductivity method can be applied. If the non-stoichiometry of a given metal sulphide is known as a function of temperature and sulphur activity, chemical diffusion data may successfully be utilized for calculation of parabolic rate constants of metal sulphidation and to obtain better insight into the growth mechanism of the sulphide scale. Using this procedure it has been shown that the sulphide scales on cobalt and manganese grow by the outward volume diffusion of cations. The chemical diffusion coefficient may also be used in the calculation of the self-diffusion coefficient of cations (or anions) if the non-stoichiometry data of a given sulphide are available. It has been shown that the self-diffusion coefficients of manganese in Mn1−yS obtained in such a way are in full agreement with those determined experimentally.

Keywords

Sulphide Cobalt Manganese Full Agreement Diffusion Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Mrowec andJ. Janowski, in “Selected Topics in High Temperature Chemistry”, edited by O. Johannesen and A. G. Andersen (Elsevier, Amsterdam, Oxford, New York, 1989) p. 55.CrossRefGoogle Scholar
  2. 2.
    S. Mrowec,React. Solids 5 (1988) 241.CrossRefGoogle Scholar
  3. 3.
    S. Mrowec andK. Przybylski,High Temp. Mater. Proc. 6 (1984) 1.CrossRefGoogle Scholar
  4. 4.
    P. Kofstad, “High Temperature Corrosion” (Elsevier, Amsterdam, 1988) p. 425.Google Scholar
  5. 5.
    V. L. Hill andH. S. Meyer, in “High Temperature Corrosion in Energy Systems”, edited by M. R. Rothman (Metallurgical Society of AIME, Warrendale 1985) p. 29.Google Scholar
  6. 6.
    R. H. Condit, R. R. Hobbins andC. E. Birchenall,Oxid. Met. 8 (1974) 409.CrossRefGoogle Scholar
  7. 7.
    M. Danielewski, S. Mrowec andA. Stoklosa,ibid. 17 (1982) 77.CrossRefGoogle Scholar
  8. 8.
    A. Bruckman andJ. Romahski,Corr. Sci. 5 (1965) 185.CrossRefGoogle Scholar
  9. 9.
    E. Fryt, W. S. Bhide andW. W. Smeltzer,J. Electrochem Soc. 126 (1979) 684.Google Scholar
  10. 10.
    A. Atkinson andR. I. Taylor,J. Mater. Sci. 13 (1978) 427.CrossRefGoogle Scholar
  11. 11.
    Idem, Philos. Mag,A39 (1979) 51.Google Scholar
  12. 12.
    Idem, ibid. 43 (1981) 979.CrossRefGoogle Scholar
  13. 13.
    C. Wagner, in “Atom Movements” (American Society for Metals, Cleveland, OH, 1951) p. 153.Google Scholar
  14. 14.
    J. B. Wagner, in “Mass Transport in Oxides” NBS Special Publication 296 (NBS), p. 65.Google Scholar
  15. 15.
    S. Mrowec, “Defects and Diffusion in Solids” (Elsevier, Amsterdam, Oxford, New York, 1980) p. 174.Google Scholar
  16. 16.
    F. Kröger, “The Chemistry of Imperfect Crystals” (North-Holland, Amsterdam, 1964).CrossRefGoogle Scholar
  17. 17.
    J. Crank, “The Mathematics of Diffusion” (Oxford University Press, Oxford, 1956).Google Scholar
  18. 18.
    P. Kofstad, “Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides” (Wiley-Interscience, New York, London, Sydney, Toronto, 1972) p. 108.Google Scholar
  19. 19.
    H. Schmalzried, “Solid State Reactions” (Academic Press, New York, 1974).Google Scholar
  20. 20.
    H. Rau,J. Phys. Chem. Solids 37 (1976) 931.CrossRefGoogle Scholar
  21. 21.
    C. N. Rao andK. P. I. Phishardy,Progr. Solid State Chem. 10 (1978) 207.CrossRefGoogle Scholar
  22. 22.
    M. Danielewski, S. Mrowec andA. Wojtowicz,Oxid. Met. 35 (1991) 223.CrossRefGoogle Scholar
  23. 23.
    G. E. Murch, “Atomic Diffusion Theory in Highly Defected Solids” (Trans. Tech. S. A., Switzerland, 1980).Google Scholar
  24. 24.
    H. Rau,J. Less-Common Metals 55 (1977) 205.CrossRefGoogle Scholar
  25. 25.
    M. Mikami, K. Yagaki andN. Ohashi,J. Phys. Soc. Jpn 32 (1972) 1217.CrossRefGoogle Scholar
  26. 26.
    M. Danielewski andS. Mrowec,J. Thermal Anal. 29 (1984) 1025.CrossRefGoogle Scholar
  27. 27.
    M. Danielewski, J. Dabek, S. Mrowec andG. Sieminska,Bull. Acad. Polon. Sci. Chem. 38 (1990) 67.Google Scholar
  28. 28.
    F. Jellinek,Acta Crystallogr. 10 (1957) 620.CrossRefGoogle Scholar
  29. 29.
    M. O'Keeffe andW. I. Moore,J. Chem. Phys. 36 (1962) 3009.CrossRefGoogle Scholar
  30. 30.
    A. Atkinson andR. I. Taylor, in “Transport in Nonstoichiometric Compounds”, edited by G. Simikovich and S. Shlbican (Plenum Press, New York, 1985) p. 285.CrossRefGoogle Scholar
  31. 31.
    C. Greskovich,J. Am. Ceram. Soc. 53 (1970) 498.CrossRefGoogle Scholar
  32. 32.
    S. Furuseth, A. Kjekshus,Acta Chem. Scand. 19 (1965) 1405.CrossRefGoogle Scholar
  33. 33.
    J. Wakabayashi, H. Kobayashi, H. Nagasaki andS. Minohara,J. Phys. Soc. Jpn 25 (1968) 227.CrossRefGoogle Scholar
  34. 34.
    H. Rau,J. Phys. Chem. Solids 39 (1978) 339.CrossRefGoogle Scholar
  35. 35.
    M. Danielewski andS. Mrowec,Solid State Ionics 17 (1985) 29.CrossRefGoogle Scholar
  36. 36.
    S. Mrowec, M. Danielewski andH. J. Grabke,J. Mater. Sci. 25 (1990) 537.CrossRefGoogle Scholar
  37. 37.
    M. Danielewski,Oxid. Met. 25 (1986) 51.CrossRefGoogle Scholar
  38. 38.
    V. Chowdhry andR. L. Coble,J. Am. Ceram. Soc. 65 (1982) 336.CrossRefGoogle Scholar
  39. 39.
    J. Deren, Z. Jastrzebski, S. Mrowec andT. Walec,Bull. Acad. Polon. Sci. Ser. Sci. Chim. 19 (1971) 153.Google Scholar
  40. 40.
    S. Mrowec, A. Wojtowicz andM. Danielewski,Solid State Ionics, in press.Google Scholar
  41. 41.
    F. A. Elrefair andW. W. Smeltzer,Oxid. Met. 16 (1981) 267.CrossRefGoogle Scholar
  42. 42.
    J. Gikwicz-Wolter,Solid State Commun., in press.Google Scholar
  43. 43.
    A. Wojtowicz, PhD Thesis, University of Mining and Metallurgy, Cracow, Poland.Google Scholar
  44. 44.
    A. Wojtowicz, M. Danielewski andS. Mrowec, unpublished data.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • S. Mrowec
    • 1
  • K. Hashimoto
    • 2
  1. 1.Department of Solid State ChemistryUniversity of Mining and MetallurgyCracowPoland
  2. 2.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations