Journal of Materials Science

, Volume 30, Issue 19, pp 4793–4800 | Cite as

Matrix cracking with frictional bridging fibres in continuous fibre ceramic composites

Part II Cracking due to residual stresses
  • C. H. Hsueh


Interfacial debonding and matrix cracking due to residual axial stresses have been analysed for unidirectional fibre-reinforced ceramic composites. The analytical solutions for the crack-opening displacement, the axial displacement of the composite due to interfacial debonding, and the critical residual axial stress for matrix cracking have been obtained. The solutions were then compared with those for tensile loading in the fibre direction. Three issues related to Part I, i.e. the effective fracture toughness of the composite, the critical loading stress for matrix cracking in the presence of residual stresses, and the debonded fibre length due to loading, were also addressed in the present study.


Polymer Residual Stress Fracture Toughness Axial Stress Fibre Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Hsueh,J. Mater. Sci.,30 (1995) 1781.CrossRefGoogle Scholar
  2. 2.
    J. Aveston, G. A. Cooper andA. Kelly, “The properties of fibre composites,” Conference Proceedings, National Physical Laboratory, Guildford (IPC Science and Technology Press, 1971) pp. 15–26.Google Scholar
  3. 3.
    D. B. Marshall, B. N. Cox andA. G. Evans,Acta Metall. 33 (1985) 2013.CrossRefGoogle Scholar
  4. 4.
    L. N. Mccartney,Proc. R. Soc. Lond. A409 (1987) 329.CrossRefGoogle Scholar
  5. 5.
    Y. C. Gao, Y. W. Mai andB. Cotterell,J. Appl. Math. Phys. (ZAMP) 39 (1988) 550.CrossRefGoogle Scholar
  6. 6.
    S. Danchaivijit andD. K. Shetty,J. Am. Ceram. Soc. 76 (1993) 2497.CrossRefGoogle Scholar
  7. 7.
    Y. C. Chiang, A. S. D. Wand andT. W. Chou,J. Mech. Phys. Solids 41 (1993) 1137.CrossRefGoogle Scholar
  8. 8.
    N. Shafry, D. G. Brandon andM. Terasaki,Euro-Ceramics 3 (1989) 3453.Google Scholar
  9. 9.
    P. G. Charalambides andA. G. Evans,J. Am. Ceram. Soc. 72 (1989) 746.CrossRefGoogle Scholar
  10. 10.
    C. H. Hsueh,Mater. Sci. Eng. A159 (1992) 65.CrossRefGoogle Scholar
  11. 11.
    R. Muki andE. Sternberg,Int. J. Solid. Struct. 6 (1970) 69.CrossRefGoogle Scholar
  12. 12.
    C. H. Hsueh,J. Mater. Sci. Lett. 7 (1988) 497.CrossRefGoogle Scholar
  13. 13.
    L. N. Mccartney,Proc. R. Soc. Lond. A425 (1989) 215.CrossRefGoogle Scholar
  14. 14.
    B. Budiansky, J. W. Hutchinson andA. G. Evans,J. Mech. Phys. Solids 34 (1986) 167.CrossRefGoogle Scholar
  15. 15.
    J. D. Eshelby,Proc. R. Soc. A241 (1957) 376.Google Scholar
  16. 16.
    D. B. Marshall andA. G. Evans,J. Am. Ceram. Soc. 68 (1985) 225.CrossRefGoogle Scholar
  17. 17.
    R. Y. Kim andN. J. Pagano,ibid. 74 (1991) 1082.CrossRefGoogle Scholar
  18. 18.
    R. A. Lowden andD. P. Stinton,Ceram. Eng. Sci. Proc. 9 (1988) 705.CrossRefGoogle Scholar
  19. 19.
    R. N. Singh,J. Am. Ceram. Soc. 73 (1990) 2930.CrossRefGoogle Scholar
  20. 20.
    T. W. Clyne andA. J. Phillipps,Compos. Sci. Technol. 51 (1994) 271.CrossRefGoogle Scholar
  21. 21.
    J. J. Brennan andK. M. Prewo,J. Mater. Sci. 17 (1982) 2371.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • C. H. Hsueh
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations