Journal of Materials Science

, Volume 30, Issue 19, pp 4781–4786 | Cite as

A comparison of the wettability of copper-copper oxide and silver-copper oxide on polycrystalline alumina

  • A. M. Meier
  • Pr. Chidambaram
  • G. R. Edwards


The contact angles of liquid silver-copper oxide/alumina and liquid copper-copper oxide/alumina systems were determined using the sessile drop method. Copper oxide (CuO) additions of 1.5–10.0 wt% were made. Temperatures of 970–1250 °C for the silver-based alloys and 1090–1300 °C for the copper-based alloys were studied. Minimum contact angles of 42±8 and 64±7 ° were obtained for the copper-copper oxide alloys and the silver-copper oxide alloys, respectively. The contact angle was approximately constant for the silver-copper oxide alloy within the immiscible liquid composition range. While the contact angles were higher for the silver-based alloys relative to the copper-based alloys, successful infiltration of a porous alumina sample was achieved at only 1050 °C for a Ag-10 wt% CuO alloy. Compression tests on infiltrated samples revealed similar compressive strengths for alumina samples infiltrated with silver-copper oxide alloys, silver-copper-copper oxide alloys and copper-copper oxide alloys. The compressive fracture strength for the infiltrated samples was an order of magnitude higher than the fracture strength of the porous alumina body without infiltration. Although silver-based alloys are more expensive than comparable copper-based alloys, in many applications the additional cost may be offset by lower processing or brazing temperatures, improved thermal and electrical conductivity, and improved toughness.


Contact Angle Compressive Strength Copper Oxide Fracture Strength Porous Alumina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Ritland andD. W. Ready,Ceram. Engng. and Sci. Proc. 14 (1993) 896.CrossRefGoogle Scholar
  2. 2.
    Y. Yoshino andT. Shibata,J. Amer. Ceram. Soc. 75 (1992) 2756.CrossRefGoogle Scholar
  3. 3.
    C. Beraud, M. Courbiere, C. Esnouf, D. Juve andD. Treheux,J. Mater. Sci. 24 (1989) 4545.CrossRefGoogle Scholar
  4. 4.
    S. T. Kim andC. H. Kim,ibid. 27 (1992) 2061.CrossRefGoogle Scholar
  5. 5.
    Y. Yoshino,J. Amer. Cer. Soc. 72 (1989) 1322.CrossRefGoogle Scholar
  6. 6.
    B. Gallois andC.H.P. Lupis,Met. Trans. B 12B (1981) 549.CrossRefGoogle Scholar
  7. 7.
    P. D. Ownby andJ. Liu,J. Adhesion Sci. Technol. 2 (1988) 255.CrossRefGoogle Scholar
  8. 8.
    T. E. O'Brien andA.C.D. Chaklader,J. Amer. Ceram. Soc. 57 (1974) 329.CrossRefGoogle Scholar
  9. 9.
    A. C. D. Chaklader, A. M. Armstrong andS. K. Misra,ibid. 51 (1968) 630.CrossRefGoogle Scholar
  10. 10.
    M. B. Baldwin, MS Thesis #4380, Colorado School of Mines, Golden, CO (1993).Google Scholar
  11. 11.
    Y. Naidich,Prog. in Surf. and Membr. Sci. 14 (1981).Google Scholar
  12. 12.
    S. P. Mehorta andA. C. D. Chaklader,Met. Trans. B 16B (1985) 567.Google Scholar
  13. 13.
    D. Chatain, M. L. Muolo andR. Sangiorgi, “Designing ceramic interfaces: understanding and tailoring interfaces for coating, composites and joining applications”, (CEC Publ., Luxembourg, 1993) p. 359.Google Scholar
  14. 14.
    G. Bernard andC. H. P. Lupis,Met. Trans. 2 (1971) 2991.CrossRefGoogle Scholar
  15. 15.
    J. E. McDonald andJ. G. Eberhart,Trans. AIME 233 (1965) 512.Google Scholar
  16. 16.
    B.C. Allen andW. D. Kingery,ibid. 215 (1959) 30.Google Scholar
  17. 17.
    G. Bernard andC.H.P. Lupis.Met. Trans. 2 (1971) 555.CrossRefGoogle Scholar
  18. 18.
    T. Massalski (Ed.), “Binary alloy phase diagrams” (ASM International, Materials Park, OH, 1990) p. 1447.Google Scholar
  19. 19.
    Z. B. Shao, K. R. Liu, L. Q. Liu, H. K. Liu andS.-X. Dou,J. Amer. Ceram. Soc. 76 (1993) 2663.CrossRefGoogle Scholar
  20. 20.
    “Thin film substrate technical specifications 10-2-0692” (Coors Ceramics Company-Electronics, Golden, CO).Google Scholar
  21. 21.
    A. Meier, PR. Chidambaram, v. Gabriel andG. R. Edwards in “Processing and fabrication of advanced materials III” (Conference Proceedings, TMS/ASM Materials Week, Oct. 1993, Pittsburgh) p. 47.Google Scholar
  22. 22.
    L. R. Fisher,J. Colloid Interface Sci. 72 (1979) 200.CrossRefGoogle Scholar
  23. 23.
    T. Iida andR. I. L. Guthrie, “The physical properties of liquid metals” (Clarendon Press, Oxford, 1988).Google Scholar
  24. 24.
    A. Butts, “Copper: the science and technology of the metal, its alloys and compounds” (Reinhold Publishing Corp., New York, 1954), Ch. 17, 19, 22.Google Scholar
  25. 25.
    A. Butts andC. D. Coxe, “Silver: economics, metallurgy and use” (D. Van Nostrand Company, Inc., Princeton, NJ, 1967), Ch. 7–9, 20.Google Scholar
  26. 26.
    N. Birks andG. H. Meier, “Introduction to high temperature materials” (Edward Arnold (Publishers) Ltd, London, 1993).Google Scholar
  27. 27.
    L. H. Van Vlack, “Elements of materials science and engineering”, 5th Ed (Addison-Wesley Publishing Company, Reading, MA, 1985).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. M. Meier
    • 1
  • Pr. Chidambaram
    • 1
  • G. R. Edwards
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringColorado School of MinesGoldenUSA

Personalised recommendations