Journal of Materials Science

, Volume 30, Issue 19, pp 4761–4769 | Cite as

Matrix morphology and fibre pull-out strength of T700/PPS and T700/PET thermoplastic composites

  • Lin Ye
  • T. Scheuring
  • K. Friedrich


The main objective of this fundamental study was to investigate effects of processing conditions and resulting matrix morphology on interfacial bond strength of fibre reinforced thermoplastic composites. Using a hot stage microscope, single fibre pull-out samples were produced with T700S high strength carbon fibre and two semicrystalline thermoplastic matrices, polyphenylene sulphide (PPS) and polyethylene terephthalate (PET), respectively. Processing temperatures and cooling histories were the major variables in sample preparation. The T700S fibre had no clear effect on the surrounding PPS and PET matrix morphology, as long as direct cooling at constant rates was selected. A transcrystalline phase around the fibres could be induced in the T700S/PPS system, if isothermal crystallization was carried out at 227°C. Fibre pull-out tests were conducted at room temperature and two basic failure paths were observed, i.e. debonding at the fibre-matrix interface and cohesive failure of the matrix close to the fibre surface. The results indicate that slow cooling rate and a resulting coarse spherulitic morphology around the fibres correlate with high interfacial shear strength. In fact somewhat higher strength values were obtained for samples with transcrystalline layers around the fibres.


Interfacial Shear Strength Thermoplastic Composite Spherulitic Morphology Matrix Morphology Polyphenylene Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Denault andT. Vu-Khanh,Polym. Compos. 13 (1992) 361.CrossRefGoogle Scholar
  2. 2.
    W. I. Lee, M. F. Talbott, G. S. Springer andL. A. Berglund,J. Reinforced Plast. Compos. 6 (1987) 2.CrossRefGoogle Scholar
  3. 3.
    M. F. Talbott, G. S. Springer andL. A. Berglund,J. Compos. Mater. 21 (1987) 1057.CrossRefGoogle Scholar
  4. 4.
    P. Cebe, S. D. Hong, S. Chung andA. Gupta, in Toughened composites, ASTM STP-937, edited by N. J. Johnston (ASTM, Philadelphia, 1987) p. 342.CrossRefGoogle Scholar
  5. 5.
    W. J. Cantwell, P. Davies andH. H. Kausch,Compos. Struct. 14 (1990) 151.CrossRefGoogle Scholar
  6. 6.
    P. Vautey,SAMPE Quart. 21 (1990) 23.Google Scholar
  7. 7.
    L. Ye andK. Friedrich,Compos. Sci. Tech. 46 (1993) 187.CrossRefGoogle Scholar
  8. 8.
    F. N. Cogswell, in 28th SAMPE Symposium (SAMPE, 1983) p. 528.Google Scholar
  9. 9.
    J. A. Peacock, B. Fife, E. Nield andC. Y. Barlow, in Composite interfaces, edited by H. Ishida and J. L. Koenig (Elsevier, New York, 1986) p. 143.Google Scholar
  10. 10.
    M. J. Folkes andS. T. Hardwick,J. Mater. Sci. Lett. 6 (1987) 656.CrossRefGoogle Scholar
  11. 11.
    Idem.,,J. Mater. Sci. 25 (1990) 2598.CrossRefGoogle Scholar
  12. 12.
    M. G. Huson andW. J. McGill,J. Polym. Sci., Phys. 23 (1985) 121.CrossRefGoogle Scholar
  13. 13.
    Hagenson et al., 34th SAMPE Symposium,2 (1989) 2255.Google Scholar
  14. 14.
    M. J. Folkes, S. T. Hardwick andW. K. Wong, in Polymer composites, edited by B. Sedlacek (W. de Gruyter & Co, Berlin, 1986) p. 33.Google Scholar
  15. 15.
    J. L. Thomason andA. A. Van Rooyen,J. Mater. Sci. 27 (1992) 889.CrossRefGoogle Scholar
  16. 16.
    B. Manasse,Ibid. 27 (1992) 6047.CrossRefGoogle Scholar
  17. 17.
    J. H. E. Chen andB. S. Hsiao,Polym. Eng. Sci. 32 (1992) 280.CrossRefGoogle Scholar
  18. 18.
    L. T. Drzal andM. Madhukar,J. Mater. Sci. 27 (1993) 569.CrossRefGoogle Scholar
  19. 19.
    S. Meretz, W. Auersch, C. Marotzke, E. Schulz andA. Hampe,Compos. Sci. Tech. 48 (1993) 285.CrossRefGoogle Scholar
  20. 20.
    H. Kobayashi, E. Hayakawa, T. Kikutani andA. Takaku,Adv. Composite. Mater. 1 (1991) 155.CrossRefGoogle Scholar
  21. 21.
    Carbon fibres, Material Information, Toray Industries, Inc., Tokyo 103, Japan (1992).Google Scholar
  22. 22.
    P. G. Galanty andJ. J. Richardson, in Engineering materials handbook Vol. 2-Engineering plastics (ASM International Metals Park, OH, 1988) p. 172.Google Scholar
  23. 23.
    D. G. Brady,Ibid. p. 186.Google Scholar
  24. 24.
    P. Marshall andJ. Price,Composites 22 (1991) 335.Google Scholar
  25. 25.
    J. M. Schultz, in Thermoplastic composite materials, edited by L. A. Carlsson, Vol. 7, series editor R. B. Pipes (Elsevier Science Publisher BV, Amsterdam, 1991), p. 31.Google Scholar
  26. 26.
    V. E. Reinsch andL. Rebenfeld,Polym. Compos. 13 (1992) 353.CrossRefGoogle Scholar
  27. 27.
    L. Ye andK. Friedrich,Composites 24 (1993) 557.CrossRefGoogle Scholar
  28. 28.
    P. H. I. Bussi,J. Mater. Sci. 26 (1991) 6373.CrossRefGoogle Scholar
  29. 29.
    J. L. Thomason andA. A. Van Rooyen,Ibid. 27 (1992) 897.CrossRefGoogle Scholar
  30. 30.
    L. Lopez andG. L. Wilker,J. Thermoplast. Compos. Mater. 4 (1991) 58.CrossRefGoogle Scholar
  31. 31.
    M. R. Pigott,Compos. Sci. Technol. 30 (1987) 295.CrossRefGoogle Scholar
  32. 32.
    P. J. Herrera-Franco andL. T. Drzal,Composites 23 (1992) 2.CrossRefGoogle Scholar
  33. 33.
    T. J. Mackin, J. Yang andP. D. Warren,J. Am. Ceram. Soc. 75 (1992) 3358.CrossRefGoogle Scholar
  34. 34.
    M. R. Pigott, in Composite applications: the role of matrix, fibre and interface, edited by T. I. Vigo and B. J. Kinzig (VCH Publishers, New York, 1992) p. 221.Google Scholar
  35. 35.
    C. T. Spamer andN. D. Brink, 33rd SAMPE Symposium (SAMPE, 1988) p. 284.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • Lin Ye
    • 1
  • T. Scheuring
    • 2
  • K. Friedrich
    • 2
  1. 1.Centre for Advanced Materials Technology, Department of Mechanical and Mechatronic EngineeringThe University of SydneyAustralia
  2. 2.Institute for Composite Materials Ltd.University of KaiserslauternKaiserslauternGermany

Personalised recommendations