Advertisement

Journal of Statistical Physics

, Volume 36, Issue 1–2, pp 219–272 | Cite as

Consistent histories and the interpretation of quantum mechanics

  • Robert B. Griffiths
Articles

Abstract

The usual formula for transition probabilities in nonrelativistic quantum mechanics is generalized to yield conditional probabilities for selected sequences of events at several different times, called “consistent histories,” through a criterion which ensures that, within limits which are explicitly defined within the formalism, classical rules for probabilities are satisfied. The interpretive scheme which results is applicable to closed (isolated) quantum systems, is explicitly independent of the sense of time (i.e., past and future can be interchanged), has no need for wave function “collapse,” makes no reference to processes of measurement (though it can be used to analyze such processes), and can be applied to sequences of microscopic or macroscopic events, or both, as long as the mathematical condition of consistency is satisfied. When applied to appropriate macroscopic events it appears to yield the same answers as other interpretative schemes for standard quantum mechanics, though from a different point of view which avoids the conceptual difficulties which are sometimes thought to require reference to conscious observers or classical apparatus.

Key words

Joint probabilities measurements quantum mechanics time reversal wave function collapse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1955), translated fromMathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932).Google Scholar
  2. 2.
    A. Einstein, B. Podolsky, and N. Rosen,Phys. Rev. 47:777 (1935).Google Scholar
  3. 3.
    M. Jammer,The Philosophy of Quantum Mechanics (John Wiley & Sons, New York, 1974).Google Scholar
  4. 4.
    E. P. Wigner,Am. J. Phys. 31:6 (1963).Google Scholar
  5. 5.
    F. London and E. Bauer,La Theorie de l'Observation en Mécanique Quantique (Hermann, Paris, 1939).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz,Quantum Mechanics:Non-Relativistic Theory (Pergamon Press, London, 1958).Google Scholar
  7. 7.
    A. Messiah,Mécanique Quantique (Dunod, Paris, 1965); English translation:Quantum Mechanics (North-Holland, Amsterdam, 1970).Google Scholar
  8. 8.
    L. I. Schiff,Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968).Google Scholar
  9. 9.
    Y. Aharonov, P. G. Bergmann, and J. L. Lebowitz,Phys. Rev. 134:B1410 (1964).Google Scholar
  10. 10.
    K. Gottfried,Quantum Mechanics. Vol. I:Fundamentals (W. A. Benjamin, New York, 1966), Chap. IV.Google Scholar
  11. 11.
    M. Cini,Nuovo Cim. 73B:27 (1983); M. Ciniet al., Found. Phys. 9:479 (1979).Google Scholar
  12. 12.
    P. A. Moldauer,Phys. Rev. D 5:1028 (1972).Google Scholar
  13. 13.
    H. Everett III,Rev. Mod. Phys. 29:454 (1957); B. S. DeWitt inBattelle Rencontres:1967Lectures in Mathematics and Physics, C. M. DeWitt and J. A. Wheeler, eds. (W. A. Benjamin, New York, 1968); B. S. DeWitt and N. Graham, eds.,The Many Worlds Interpretation of Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1973).Google Scholar
  14. 14.
    L. E. Ballentine,Found. Phys. 3:229 (1973).Google Scholar
  15. 15.
    P. Benioff,Found. Phys. 8:709 (1978).Google Scholar
  16. 16.
    W. Feller,An Introduction to Probability Theory and its Applications, 3rd ed. (John Wiley and Sons, New York, 1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Robert B. Griffiths
    • 1
    • 2
  1. 1.Department of PhysicsCarnegie-Mellon UniversityPittsburgh
  2. 2.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance

Personalised recommendations