Cracked orthotropic strip with clamped boundaries

  • H. G. Georgiadis
  • G. A. Papadopoulos
Brief Reports


The stress intensity factor at the tip of a semi-infinite crack in an orthotropic infinite strip was determined. Clamped strip boundaries were considered.


Stress Intensity Intensity Factor Stress Intensity Factor Mathematical Method Infinite Strip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. F. Kanninen and C. H. Popelar,Advanced fracture mechanics. Oxford University Press, New York 1985.zbMATHGoogle Scholar
  2. [2]
    H. G. Georgiadis and G. A. Papadopoulos,Determination of SIF in a cracked plane orthotropic strip by the Wiener-Hopf technique. Int. J. Fracture34, 57–64 (1987).CrossRefGoogle Scholar
  3. [3]
    W. G. Knauss,Stresses in an infinite strip containing a semi-infinite crack. J. Appl. Mech.33, 356–362 (1966).CrossRefGoogle Scholar
  4. [4]
    J. R. Rice,Discussion on Ref. [3]. J. Appl. Mech.34, 248–249 (1967).CrossRefGoogle Scholar
  5. [5]
    F. Nilsson,Dynamic stress-intensity factors for finite strip problems. Int. J. Fracture8, 403–411 (1972).Google Scholar
  6. [6]
    C. H. Popelar and C. Atkinson,Dynamic crack propagation in a viscoelastic strip. J. Mech. Phys. Solids28, 79–93 (1980).MathSciNetCrossRefGoogle Scholar
  7. [7]
    B. R. Baker,Ductile yielding and brittle fracture at the ends of parallel cracks in a stretched orthotropic sheet. Int. J. Fracture2, 576–595 (1966).Google Scholar
  8. [8]
    Y. Konishi and A. Atsumi,Crack problem of transversely isotropic strip. Int. J. Engng. Sci.11, 9–20 (1973).CrossRefGoogle Scholar
  9. [9]
    P. K. Satapathy and H. Parhi,Stresses in an orthotropic strip containing a Griffith crack. Int. J. Engng. Sci.16, 147–154 (1978).CrossRefGoogle Scholar
  10. [10]
    G. C. Sih and E. P. Chen,Cracks in composite materials, Mechanics of Fracture 6. Nijhoff Publ., The Hague 1981.CrossRefGoogle Scholar
  11. [11]
    A. Cinar and F. Erdogan,The crack and wedging problem for an orthotropic strip. Int. J. Fracture26, 83–102 (1983).Google Scholar
  12. [12]
    S. G. Lekhnitskii,Theory of elasticity of an anisotropic elastic body. Holden-Day. San Francisco 1963.zbMATHGoogle Scholar
  13. [13]
    G. F. D. Duff and D. Naylor,Differential equations of applied mathematics. Wiley, New York 1966.zbMATHGoogle Scholar
  14. [14]
    B. Noble,Methods based on the Wiener-Hopf technique. Pergamon Press, New York 1958.zbMATHGoogle Scholar
  15. [15]
    H. G. Georgiadis,Complex-variable and integral-transform methods for elastodynamic solutions of cracked orthotropic strips. Engng. Fracture Mech.24, 727–735 (1986).CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • H. G. Georgiadis
    • 1
  • G. A. Papadopoulos
    • 1
    • 2
  1. 1.Dept. Mech. Engng. and Appl. Mech.The University of MichiganAnn ArborUSA
  2. 2.Mechanics DivisionThe National Technical University of AthensGreece

Personalised recommendations