Advertisement

An asymptotic approach for shock-wave/transpired turbulent boundary layer interactions

  • Atila P. Silva-Freire
Original Papers

Summary

In this work perturbation techniques are used to study the problem of the interaction between a shock wave and a transpired turbulent boundary layer at transonic speeds. In the case considered here, the Mach number is assumed to be high enough for the sonic line to penetrate deep into the boundary layer so that it ends close to the wall. The flow region is divided into a region of strong interaction and regions of weak interaction. For the regions of weak interaction, upstream and downstream of the shock, a classical two-deck structure is assumed to hold for the boundary layer. Solutions chosen for these regions must account for the effects of blowing or suction. The strong interaction region on the other hand is shown to consist of three decks. A detailed analysis of the whole flow field is carried out and solutions valid in the double limit as Reynolds number tends to infinity and Mach number tends to one are proposed. Solutions of adjacent layers are shown to match so providing a smooth solution for the entire flow region. The analysis yields solutions for the pressure and skin-friction profiles.

Keywords

Boundary Layer Shock Wave Reynolds Number Mach Number Flow Region 

Zusammenfassung

In dieser Veröffentlichung wird mit Methoden der Störungsrechnung das Problem der Wechselwirkung zwischen einer Schockwelle und einer turbulenten Grenzschicht mit Blas- und Saugeffekten beim Übergang zu Überschallgeschwindigkeiten untersucht. In dem hier betrachteten Fall ist die Machzahl so hoch, daß die Schockwellenfront tief in die Grenzschicht eindringt und nahe bei der Wand endet. Das Strömungsgebiet wird in ein Gebiet starker Wechselwirkung und in ein Gebiet schwacher Wechselwirkung eingeteilt. Für die Gebiete schwacher Wechselwirkung (vor und hinter der Schockwellenfront) wird angenommen, daß die Grenzschicht eine klassische zwei-Deck Struktur besitzt. Lösungen, die für diese Gebiete gewählt werden, müssen die Blas- oder Saugeffekte erklären. Es wird gezeigt, daß das Gebiet starker Wechselwirkung dagegen aus drei Decks besteht. Eine ausführliche Berechnung des gesamten Strömungsfeldes wird durchgeführt, und es werden Lösungen angegeben, die gültig sind für den doppelten Grenzfall, daß die Reynoldszahl gegen unendlich und die Machzahl gegen eins strebt. Es zeigt sich, daß die Lösungen für benachbarte Schichten aneinander passen, und daß sich damit eine stetige Lösung für das gesamte Strömungsgebiet ergibt. Die Lösungen für die Druck- und Wandreibungsprofile werden bestimmt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Krogmann, E. Stanewsky and P. Thiede,Effects of suction on shock /boundary layer interaction and shock induced separation. J. Aircraft22, 37–42 (1985).CrossRefGoogle Scholar
  2. [2]
    H. T. Nagamatsu, R. D. Orozco and D. C. Ling,Porosity effects on supercritical airfoil drag reduction by shock wave/boundary layer control. AIAA paper No. 84-1682 (1984).Google Scholar
  3. [3]
    H. T. Nagamatsu, R. V. Ficarra and R. Dyer,Supercritical airfoil drag reduction by passive shock wave/boundary layer control in the Mach number range 0.75 to 0.90. AIAA paper No. 85-0207 (1985).Google Scholar
  4. [4]
    C. R. Oiling and G. S. Kulikravich,Porous aerofoil analysis using viscous-inviscid coupling at transonic speeds. Int. J. Num. Meth. in Fluids7, 103–121 (1987).CrossRefGoogle Scholar
  5. [5]
    G. Savu, O. Trifu and L. Z. Dumitrescu,Supression of shocks on transonic aerofoils. 14th Int. Symp. on Shock Tubes and Waves, 92–101 (1983).Google Scholar
  6. [6]
    A. F. Messiter,Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part I: Pressure distribution, ZAMP31, 204–227 (1980).zbMATHGoogle Scholar
  7. [7]
    M. S. Liou and T. C. Adamson, Jr.,Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. Part II: Wall Shear stress, ZAMP31, 227–246 (1980).zbMATHGoogle Scholar
  8. [8]
    A. P. Silva-Freire,An asymptotic solution for transpired incompressible turbulent boundary layers. To be published in the Int. J. Heat & Mass Transfer.Google Scholar
  9. [9]
    A. P. Silva-Freire,An extension of the transpired skin-friction equation to compressible turbulent boundary layers. To be published.Google Scholar
  10. [10]
    R. L. Simpson,Characteristics of turbulent boundary layers at low Reynolds numbers with and without transpiration. JFM42, 769–802 (1970).CrossRefGoogle Scholar
  11. [11]
    T. N. Stevenson,A modified defect law for turbulent boundary layers with suction or injection. Cranfield College of Aero, Aero report No.170 (1963).Google Scholar
  12. [12]
    T. C. Adamson, Jr. and A. F. Messiter,Normal shock wave-turbulent boundary layer interactions in transonic flow near separation, Transonic flow problems in turbomachinery. Ed. T. C. Adamson Jr. and M. F. Platzer, 392–441 (1977).Google Scholar
  13. [13]
    T. C. Adamson, Jr. and A. Feo,Interaction between a shock wave and a turbulent boundary layer at transonic speeds, SIAM J. Appl. Math.29, 121–145 (1975).CrossRefGoogle Scholar
  14. [14]
    G. E. Gadd,Interactions between shock waves and turbulent boundary layers, ARC R & M 3262 (1961).Google Scholar
  15. [15]
    W. G. Sawyer and C. J. Long,A study of normal shock-wave turbulent boundary layer interaction at Mach numbers 1.3, 1.4 and 1.5, RAE TR No. 82099 (1982).Google Scholar

Copyright information

© Birkhäuser Verlag 1988

Authors and Affiliations

  • Atila P. Silva-Freire
    • 1
    • 2
  1. 1.University Engineering Dept.England
  2. 2.Darwin CollegeCambridgeEngland

Personalised recommendations