Optimal residence time policy for product yield maximization in chemical reactors

  • V. Nestoridis
  • I. Andreou
  • C. G. Vayenas
Contributed Papers


This paper analyzes the problem of optimal reactor-type selection for the maximization of product yield in continuous, segregated flow, isothemal or adiabatic chemical reactors of given volume. The mathematical treatment is valid for any type of chemical reaction network with arbitrary kinetics. For fixed mean residence time, it is shown that maximum or minimum yield of a product can always be obtained exactly or within arbitrary approximation by a combination of two plug-flow reactors. The analysis assumes strictly segregated flow, but some of the conclusions reached do not depend on the extent of micromixing.

Key Words

Chemical yield optimization convex analysis residence time distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carberry, J. J.,Chemical and Catalytic Reaction Engineering, McGraw-Hill, New York, New York, 1976.Google Scholar
  2. 2.
    Levenspiel, O.,Chemical Reaction Engineering, John Wiley and Sons, New York, New York, 1972.Google Scholar
  3. 3.
    Kemperman, J. H. B.,The General Moment Problem, A Geometric Approach, Annals of Mathematical Statistics, Vol. 39, pp. 93–122, 1968.Google Scholar
  4. 4.
    Richter, H., Parameterfrei Abschätzung und Realisierung von Erwartungswerten, Blätter der Deutchen Gesellschaft für Versicherungmathematik, Vol. 3, pp. 147–161, 1957.Google Scholar
  5. 5.
    Rogosinsky, W. W.,Moments of Nonnegative Mass, Proceedings of the Royal Society of London, Series A, Vol. 245, pp. 1–27, 1958.Google Scholar
  6. 6.
    Riesz, F., Sur Certaines Systémes Singuliers d'Equations Integrales, Annales Scientifiques de l'Ecole Normale Superieure, Vol. 28, pp. 33–62, 1911.Google Scholar
  7. 7.
    Mulholland, H. P., andRogers, C. A.,Representations Theorems for Distribution Functions, Proceedings of the London Mathematical Society, Vol. 8, pp. 177–223, 1958.Google Scholar
  8. 8.
    Tizs, S. H., andBorwein, J. M.,Some Generalizations of Caratheodory's Theorem via Barycenters, with Application to Mathematical Programming, Canadian Mathematical Bulletin, Vol. 23, pp. 339–346, 1980.Google Scholar
  9. 9.
    Lotka, A.,Undamped Oscillations Derived from the Law of Mass Action, Journal of the American Chemical Society, Vol. 42, pp. 1595–1604, 1920.Google Scholar
  10. 10.
    Feinberg, M.,Mathematical Aspects of Mass Action Kinetics, Chemical Reactor Theory, Edited by L. Lapidus and N. R. Amundson, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 1–78, 1977.Google Scholar
  11. 11.
    Modell, M., andReid, R. C.,Thermodynamics and Its Applications, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 14–16, 1974.Google Scholar
  12. 12.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. Nestoridis
    • 1
  • I. Andreou
    • 2
  • C. G. Vayenas
    • 3
  1. 1.University of CreteHeraclionGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  3. 3.Research Institute of Chemical Engineering and High-Temperature Chemical ProcessesUniversity of PatrasPatrasGreece

Personalised recommendations