Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Constant copy numbers of plasmids inSaccharomyces cerevisiae hosts with different ploidies

  • 18 Accesses

Summary

The cellular β-galactosidase activities produced by thelac'Z gene ofEscherichia coli, cloned on YEp, YRp, or YCp-type plasmids in host cells ofSaccharomyces cerevisiae with different ploidies, and which was expressed by a modified jeastHIS5 promoter, showed characteristic differences depending on the plasmid. But for any given plasmid, the isogenic diploid and tetraploid transformants showed slightly lower enzyme activities than their respective haploid transformants. This was due to the similar copy numbers of the plasmids in host cells. Since the cell number per unit volume of the culture decreased with increasing cell ploidy, the enzyme activity per unit volume of the culture decreased significantly. The holding stability of plasmids increased with increasing ploidy of the host cell, especially that of the YRp plasmid. On the YRp plasmid, thelac'Z gene showed higher productivity withTRP1 thanLEU2 as the selection marker for the plasmid.

This is a preview of subscription content, log in to check access.

References

  1. Andreadis A, Hsu Y-P, Kohlhaw GB, Schimmel P (1982) Nucleotide sequence of yeastLEU2 shows 5′-noncoding region has sequences cognate to leucine. Cell 31:319–325

  2. Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushio K, Muta T, Oshima Y (1985) Molecular and functional organization of yeast plasmid pSR1. J Mol Biol 182:191–203

  3. Bachmann BJ (1983) Linkage map ofEscherichia coli K-12, edition 7. Microbiol Rev 47:180–230

  4. Broach JR (1981) Genes ofSaccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces: life cycle and inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 653–727

  5. Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of theCAN1 gene. Gene 8:121–133

  6. Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) β-Galactosidase gene fusions for analyzing gene expression inEscherichia coli and yeasts. Methods Enzymol 100:293–308

  7. Clarke L, Carbon J (1978) Functional expression of cloned yeast DNA inEscherichia coli: specific complementation of argininosuccinate lyase (argH) mutations. J Mol Biol 120:517–532

  8. Dobson MJ, Tuite MF, Mellor J, Roberts NA, King RM, Burke DC, Kingsman AJ, Kingsman SM (1983) Expression inSaccharomyces cerevisiae of human interferon-alpha directed by theTRP1 5′ region. Nucleic Acids Res 11:2287–2302

  9. Donahue TF, Daves RS, Lucchini G, Fink GR (1983) A short nucleotide sequence required for regulation ofHIS4 by the general control system of yeast. Cell 32:89–98

  10. Erhart E, Hollenberg CP (1983) The presence of a defectiveLEU2 gene on 2 μ DNA recombinant plasmids ofSaccharomyces cerevisiae is responsible for curing and high copy number. J Bacteriol 156:625–635

  11. Harashima S, Takagi A, Oshima Y (1984) Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol Cell Biol 4:771–778

  12. Hereford L, Fahrner K, Woolford J, Rosbash M, Kaback DB (1979) Isolation of yeast histone genes H2A and H2B. Cell 18:1261–1271

  13. Hinnebusch AG, Fink GR (1983a) Repeated DNA sequences upstream fromHIS1 also occur at several other co-regulated genes inSaccharomyces cerevisiae. J Biol Chem 258:5238–5247

  14. Hinnebusch AG, Fink GR (1983b) Positive regulation in the general amino acid control ofSaccharomyces cerevisiae. Proc Natl Acad Sci USA 80:5374–5378

  15. Hsu Y-P, Kohlhaw G, Niederberger P (1982) Evidence that α-isopropylmalate synthase ofSaccharomyces cerevisiae is under the “general” control of amino acid biosynthesis. J Bacteriol 150:967–972

  16. Jeffreys AJ, Flavell RA (1977) A physical map of the DNA regions flanking the rabbit β-globin gene. Cell 12:429–439

  17. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 352–355; p 431

  18. Miozzari G, Niederberger P, Hütter R (1978) Tryptophan biosynthesis inSaccharomyces cerevisiae: control of the flux through the pathway. J Bacteriol 134:48–59

  19. Miyajima A, Miyajima I, Arai K, Arai N (1984) Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker inSaccharomyces cerevisiae. Mol Cell Biol 4:407–414

  20. Morrison DA (1977) Transformation inEscherichia coli: cryogenic preservation of competent cells. J Bacteriol 132:349–351

  21. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activityin vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

  22. Rose M, Casadaban MJ, Botstein D (1981) Yeast genes fused to β-galactosidase inEscherichia coli can be expressed normally in yeast. Proc Natl Acad Sci USA 78:2460–2464

  23. Schürch A, Miozzari J, Hütter R (1974) Regulation of tryptophan biosynthesis inSaccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J Bacteriol 117:1131–1140

  24. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

  25. Stinchcomb DT, Mann C, Davis RW (1982) Centromeric DNA fromSaccharomyces cerevisiae. J Mol Biol 158:157–179

  26. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

  27. Takagi A, Harashima S, Oshima Y (1983) Construction and characterization of isogenic series ofSaccharomyces cerevisiae polyploid strains. Appl Environ Microbiol 45:1034–1040

  28. Takagi A, Harashima S, Oshima Y (1985) Hybridization and polyploidization ofSaccharomyces cerevisiae strains by transformation-associated cell fusion. Appl Environ Microbiol 49:244–246

  29. Toh-e A, Tada S, Oshima Y (1982) 2-μm DNA-like plasmids in the osmophilic haploid yeastSaccharomyces rouxii. J Bacteriol 151:1380–1390

  30. Tschumper G, Carbon J (1980) Sequence of a yeast DNA fragment containing a chromosomal replicator and theTRP1 gene. Gene 10:157–166

  31. Wahl GM, Stern M, Stark GR (1979) Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci USA 76:3683–3687

Download references

Author information

Correspondence to Yasuji Oshima.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takagi, A., Chua, E.N., Boonchird, C. et al. Constant copy numbers of plasmids inSaccharomyces cerevisiae hosts with different ploidies. Appl Microbiol Biotechnol 23, 123–129 (1985). https://doi.org/10.1007/BF00938964

Download citation

Keywords

  • Enzyme
  • Enzyme Activity
  • Host Cell
  • Unit Volume
  • Selection Marker