Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Species-specific ability ofChlorella strains (Chlorophyceae) to form stable symbioses withHydra viridis

  • 42 Accesses

  • 17 Citations


46 strains ofChlorella, identified by physiological and biochemical characters, were examined for their ability to form stable symbioses with aposymbioticHydra viridis. It was found to be a species-specific characteristic. Among the 15 taxa studied, onlyC. saccharophila var.ellipsoidea, C. saccharophila var.saccharophila, C. fusca var.vacuolata, C. kessleri, C. luteoviridis, andC. protothecoides formed stable symbioses withHydra viridis. Among the 11 known physiological and biochemical characters of theseChlorella species, only acid tolerance seems to be correlated with symbiosis: All symbiotic species are capable of growing at or below pH 4.0.

This is a preview of subscription content, log in to check access.


  1. Douglas, A. E., Huss, V. A. R., 1986: On the characteristics and taxonomic position of symbioticChlorella. — Arch. Microbiol.145: 80–84.

  2. Huss, V. A. R., Dörr, R., Grossmann, U., Kessler, E., 1986: Deoxyribonucleic acid reassociation in the taxonomy of the genusChlorella. I.Chlorella sorokiniana. — Arch. Microbiol.145: 329–333.

  3. Jolley, E., Smith, D. C., 1978: The green hydra symbiosis. I Isolation, culture and characteristics of theChlorella symbiont of “European”Hydra viridis. — New Phytol.81: 637–645.

  4. Kessler, E., 1976: Comparative physiology, biochemistry, and the taxonomy ofChlorella (Chlorophyceae). — Pl. Syst. Evol.125: 129–138.

  5. —, 1978: Physiological and biochemical contributions to the taxonomy of the genusChlorella. XII. Starch hydrolysis and a key for the identification of 13 species. — Arch. Microbiol.119: 13–16.

  6. —, 1982: Chemotaxonomy in theChlorococcales. — InRound, F. E., Chapman, D. J., (Eds.): Progress in phycological research1, pp. 111–135. — Amsterdam: Elsevier.

  7. —, 1987: Separation ofChlorella ellipsoidea fromC. saccharophila (Chlorophyceae): no growth on mannitol and cadmium sensitivity. — Pl. Syst. Evol.157: 247–251.

  8. —, 1970: Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. IV. Verwertung organischer Stickstoffverbindungen. — Arch. Mikrobiol.70: 211–216.

  9. —, 1971: Physiologische und biochemische Beiträge zur Taxonomie der GattungChlorella. V. Die auxotrophen und mesotrophen Arten. — Arch. Mikrobiol.79: 44–48.

  10. Lenhoff, H. M., Brown, R. D., 1970: Mass culture ofHydra: an improved method and its application to other aquatic invertebrates. — Lab. Anim.4: 139–154.

  11. Rahat, M., Reich, V., 1984: Intracellular infection of aposymbioticHydra viridis by a foreign free-livingChlorella sp.: Initiation of a stable symbiosis. — J. Cell Sci.65: 265–277.

  12. —, —, 1985: Correlations between characteristics of some free-livingChlorella sp. and their ability to form stable symbioses withHydra viridis. — J. Cell Sci.74: 257–266.

  13. —, —, 1986: Algal endosymbiosis in brown hydra: Host/symbiont specificity. — J. Cell Sci.86: 273–286.

  14. Smith, D. C., Douglas, A. E., 1987: The biology of symbiosis. — London: Arnold.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kessler, E., Huss, V.A.R. & Rahat, M. Species-specific ability ofChlorella strains (Chlorophyceae) to form stable symbioses withHydra viridis . Pl Syst Evol 160, 241–246 (1988).

Download citation

Key words

  • Algae
  • Chlorophyceae
  • Chlorella
  • Hydra viridis
  • Biochemical taxonomy
  • symbiosis
  • acid tolerance