Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A discretization method for systems of linear inequalities

  • 41 Accesses


We investigate a method for approximating a convex domainCR n described by a (possibly infinite) set of linear inequalities. In contrast to other methods, the approximating domains (polyhedrons) lie insideC. We discuss applications to semi-infinite programming and present numerical examples.

This is a preview of subscription content, log in to check access.


  1. 1.

    Collatz, L.,Aufgaben Monotoner Art, Archiv der Mathematik, Vol. 3, pp. 366–376, 1953.

  2. 2.

    Strang, G., andFi, G.,An Analysis of the Finite-Element Method, Prentice Hall, Englewood Cliffs, New Jersey, 1973.

  3. 3.

    Collatz, L., andWetterling, W.,Optimization Problems, Springer-Verlag, Berlin, Germany, 1976.

  4. 4.

    Meyn, K. H., andWerner, B.,Maximum and Monotonicity Principles for Elliptic Boundary-Value Problems in Partitioned Domains, Applicable Analysis, Vol. 11, pp. 1–12, 1980.

  5. 5.

    Böther, H. H.,Verallgemeinerte Monotonie und Fehlerabschätzungen aus den Defekten bei Parabolischen Randwertaufgaben, Universität Hamburg, Dissertation, 1977.

  6. 6.

    Hofmann, W.,Monotonie und Finite Elemente bei Zweidimensionalen Hyperbolischen Anfangswertaufgaben, Universität Hamburg, Preprint, 1978.

  7. 7.

    Collatz, L.,Monotonicity with Discontinuities in Partial Differential Equations, Lecture Notes in Mathematics, Vol. 415, Springer-Verlag, Berlin, Germany, 1973.

  8. 8.

    Gustafson, S. Å., andKortanek, K. O.,Numerical Treatment of a Class of Semi-Infinite Programming Problems, Naval Research Logistic Quarterly, Vol. 20, pp. 477–504, 1973.

  9. 9.

    Glashoff, K., andGustafson, S. Å.,Einführung in die Lineare Optimierung, Wissenschaftliche Buchgesellschaft, Darmstadt, Germany, 1978.

  10. 10.

    Hettich, E., Editor,Semi-Infinite Programming, Springer-Verlag, Berlin, Germany, 1979.

  11. 11.

    Meyn, K. H.,Monotonieaussagen für Elliptische und Parabolische Randwertaufgaben und Anwendungen auf Finite-Element Funktionen, Universität Hamburg, Dissertation, 1979.

  12. 12.

    Walter, W.,Differential and Integral Inequalities, Springer-Verlag, Berlin, Germany, 1970.

  13. 13.

    Gesing, W. S., andDavison, E. J.,Global Minimization of Polynomials of n Variables with Control Applications, Proceedings of the 14th Annual Allerton Conference on Circuits and Systems, Allerton, Illinois, 1976.

  14. 14.

    Modarressi, A. R., andBose, N. K.,A Multivariable Polynomial Nonnegativity Test, Proceedings of the IEEE, Vol. 64, pp. 283–285, 1976.

  15. 15.

    Modarressi, A. R., andBose, N. K.,On Nonglobal Positivity and Domains of Positivity of Multivariable Polynomials, Proceedings of the IEEE, Vol. 65, pp. 936–945, 1977.

  16. 16.

    Bickart, T. A., andJury, E. J.,Real Polynomials: Nonnegativity and Positivity, IEEE Transactions on Circuits and Systems, Vol. 25, pp. 676–683, 1978.

Download references

Author information

Additional information

The paper was written at the Institut für Angewandte Mathematik, Universität Hamburg, Hamburg, West Germany. The author thanks Prof. U. Eckhardt, Dr. K. Roleff, and Prof. B. Werner for helpful discussions.

Communicated by G. L. Nemhauser

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyn, K.H. A discretization method for systems of linear inequalities. J Optim Theory Appl 34, 355–369 (1981). https://doi.org/10.1007/BF00934677

Download citation

Key Words

  • Inequalities
  • semi-infinite programming
  • polynomials
  • discretization methods