Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Brine organisms and the question of habitat-specific adaptation

  • 38 Accesses

  • 5 Citations

Abstract

Among the well-known ultrasaline terrestrial habitats, the Dead Sea in the Jordan Rift Valley and Don Juan Pond in the Upper Wright Valley represent two of the most extreme. The former is a saturated sodium chloride-magnesium sulfate brine in a hot desert, the latter a saturated calcium chloride brine in an Antarctic desert. Both Dead Sea and Don Juan water bodies themselves are limited in microflora, but the saline Don Juan algal mat and muds contain abundant nutrients and a rich and varied microbiota, includingOscillatoria,Gleocapsa,Chlorella, diatoms,Penicillium and bacteria.

In such environments, the existence of an array of specific adaptations is a common, and highly reasonable, presumption, at least with respect to habitat-obligate forms. Nevertheless, many years of ongoing study in our laboratory have demonstrated that lichens (e.g.Cladonia), algae (e.g.Nostoc) and fungi (e.g.Penicillium,Aspergillus) from the humid tropics can sustain metabolism down to −40°C and growth down to −10°C in simulated Dead Sea or Don Juan (or similar) media without benefit of selection or gradual acclimation. Non-selection is suggested in fungi by higher growth rates from vegetative inocula than spores. The importance of nutrient parameters was also evident in responses to potassium and reduced nitrogen compounds.

In view of the saline performance of tropicalNostoc, and its presence in the Antarctic dry valley soils, its complete absence in our Don Juan mat samples was and remains a puzzle.

We suggest that adaptive capability is already resident in many terrestrial life forms not currently in extreme habitats, a possible reflection of evolutionary selection for wide spectrum environmental adaptability.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hesse, R., Allee, W., and Schmidt, K. 1937.Ecological Animal Geography. John Wiley and Sons, New York. pp. 11–55; 150–175; 377–420; 490–514.

  2. 2.

    Alexander, W. 1976. Natural Selection and the ecology of microbial adaptation in a biospherein Heinrich, M. (ed).Extreme Environments. Acad. Press, New York. pp 3–25. (ISBN 0-12-337850-8).

  3. 3.

    Imshenetsky, A., Lozino-Lozinsky, L., Zoar, E., Jenkins, D., Siegel, S. and ZoBell, C. 1975. Biological effects of extreme environment conditionsin Calvin, M. and Gazenko, O. (eds.).Foundations of Space Biology and Medicine Vol. 1 (Part 3) Ch. VI, pp. 271–320. Science and Technology Office, National Aeronautics and Space Administration, Washington. (LC No. 74-600174).

  4. 4.

    Siegel, S., Halpern, L., Giumarro, C., Renwick, G. and Davis, G. 1962. Martian biology, the experimentalists approach.Nature. 197, pp. 329–331.

  5. 5.

    Siegel, S., Renwick, G., Daly, O., Giumarro, C., Davis, G. and Halpern L. 1965. Survival and performance of earth organisms in simulated extraterrestrial environmentsin Mamikunian, G. and Briggs, M. (eds.).Current Aspects of Exobiology. Pergamon Press, Oxford. pp. 119–178.

  6. 6.

    Siegel S. 1967. Elements of space biology: an experimental approach to the basic biology of stress.Adv. Space Sci. Tech. 9, pp. 1–100. Acad. Press, New York.

  7. 7.

    Skinner, F. 1968. The limits of microbial existence.Proc. Roy Soc. B171, pp. 77–89.

  8. 8.

    Pittendrigh, C., Vishnia, W. and Pearman, J. (eds.) 1966.Biology and the Exploration of Mars. Publ. 1296 Nat. Acad. Sci., Washington. pp. 147–186; 213–258. (LC No. 65-60913).

  9. 9.

    Cameron, R., Hanour, R. and Morelli, F. 1976. Antarctic Microbiology—preparation for Mars life detection, quarantine and back contaminationin Heinoich, M. (ed.).Extreme Environments. Acad. Press, New York. pp. 57–79.

  10. 10.

    Siegel, S., Speitel T. and Stoecker, R. 1969. Life in earth external environments: a study of cryobiotic potentialities.Cryobiol. 6, pp. 160–181.

  11. 11.

    Meyer, G., Morrow, M., Wyss, O., Berg, T., and Littlepage, J. 1962. Antarctica: the microbiology of an unfrozen saline pond.Sci 138, pp. 1103–1104.

  12. 12.

    Siegel, B., McMurtry, G., Siegel, S., Chen, J., and LaRock, P. 1979. Life in the calcium chloride environment of Don Juan Pond, Antarctica,Nature 280, pp. 829–8.

  13. 13.

    Siegel, B., Siegel, S., Chen, J., and LaRock, P. 1983. The algal mat of Don Juan Pond, an extraterrestrial habitat on Earth.Adv. in Space Res. 3. In Press.

  14. 14.

    Siegel, B. and Siegel, S. 1980. Further studies on the environmental capabilities of fungi: salt-ultraviolet-temperature interactions inPenicillium.Life Sci. and Space Res. 18, pp. 199–203.

  15. 15.

    Valdez, R., Siegel, B., and Siegel, S. 1981. Effects of salts and temperature on pest-irradiation growth ofPenicillium exposed to ultraviolet.Adv. Space Res. 1, pp. 49–52.

  16. 16.

    Siegel, S. and Stoecker, R. 1971. Cryobiotic extremes: microbiology of a simulated Don Juan Pond. AbstractCryobiol. 8, pp. 387.

  17. 17.

    Siegel, B. and Siegel, S. 1971. Cryobiology of the relict formKakabekia barghoorniana Siegel and Siegel. Abstract.Cryobiol. 8, pp. 388.

  18. 18.

    Siegel, S. 1973. Cryobiology: simulation of Don Juan Pond and other studies. Semi-ann. Report. National Aeronautics and Space Administration Grant NGL12-001-042. pp. 1–11.

  19. 19.

    Speitel, T. and Siegel, S. 1973. The utility of the motile algaDinaliella in experimental cryobiology. Abstract.Cryobiol 10, pp. 531.

  20. 20.

    Speitel, T. 1974.The Cryo-and Halobiology of Dunaliella, Ph.D. Dissertation, Department of Botany. University of Hawaii at Manoa.

  21. 21.

    Siegel, S., Nathan, H., and Roberts, K. 1968. Experimental biology of ammonia-rich environments: optical and isotopic evidence for vital activity inPenicillium in liquid ammonia-glycerol media at −40 C.Proc. Nat. Acad. Sci. 60, pp. 505–508.

  22. 22.

    Marre, E. and Servattoz, O. 1959. Sul meccanisino di adattamente a condizione osmotische estreme.Atti. acad. nazl. Loncei Rend. Class Sci fis. mat. c nat. 26, pp. 272–278.

  23. 23.

    Ott, J. and Waber, J. 1982. Survival of bluegreen algae in a simulated Antarctic pond.Envir. Exper. Bot. 22, pp. 9–14.

  24. 24.

    Siegel, S. and Roberts, K. 1968. Biochemical activity and water: the activity of heme enzymes in non-aqueous media. Space Life Sci. 1, pp. 131–134.

  25. 25.

    Siegel, S. and Speitel, T. 1977. Life and the outer planets II. Enzyme activity in ammonia-water systems and other exotic media at various temperatures. Life Sci. and Space Res. 15, pp. 76–78.

  26. 26.

    Siegel, S., Lavee, S. and Siegel, B. 1978. Oxidation of aromatic amines hyperoxidase at pH14.Phytochem. 17, pp. 1221–1227.

  27. 27.

    Mueller-Dombois, D., Bridges, K. and Carson, H. 1981. Island Ecosystems US/IBP Synthesis Series 15. Hutchinson Ross Publ. Co., Woods Hole pp 481–482 and 494–496 (ISBN 0-87933-381-2).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siegel, B.Z., Siegel, S.M., Speitel, T. et al. Brine organisms and the question of habitat-specific adaptation. Origins Life Evol Biosphere 14, 757–770 (1984). https://doi.org/10.1007/BF00933731

Download citation

Keywords

  • Penicillium
  • Chlorella
  • Nostoc
  • Rift Valley
  • Varied Microbiota