Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Imbedding methods for integral equations with applications

  • 60 Accesses

  • 2 Citations

Abstract

During the last decade or two, significant progress has been made in the development of imbedding methods for the analytical and computational treatment of integral equations. These methods are now well known in radiative transfer, neutron transport, optimal filtering, and other fields. In this review paper, we describe the current status of imbedding methods for integral equations. The paper emphasizes new analytical and computational developments in control and filtering, multiple scattering, inverse problems of wave propagation, and solid and fluid mechanics. Efficient computer programs for the determination of complex eigenvalues of integral operators, analytical investigations of stability for significant underlying Riccati integrodifferential equations, and comparisons against other methods are described.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Courant, R., andHilbert, D.,Methods of Mathematical Physics, Vol. 1, John Wiley and Sons (Interscience Publishers), New York, New York, 1953.

  2. 2.

    Noble, B.,A Bibliography of Methods for Solving Integral Equations, University of Wisconsin, Mathematics Research Center, Report No. 73, 1971.

  3. 3.

    Cochran, J.,Analysis of Linear Integral Equations, McGraw-Hill Publishing Company, New York, New York, 1972.

  4. 4.

    Kagiwada, H., andKalaba, R.,Integral Equations Via Imbedding Methods, Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

  5. 5.

    Scott, M. R.,A Bibliography on Invariant Imbedding and Related Topics, Sandia Laboratories, Report No. SC-71-0886, 1971.

  6. 6.

    Shampine, L., andGordon, M. K.,Computer Solution of Ordinary Differential Equations: The Initial Value Problem, Freeman Press, San Francisco, California, 1975.

  7. 7.

    Ficken, F. A.,The Continuation Method for Functional Equations, Communications on Pure and Applied Mathematics, Vol. 4, pp. 435–455, 1951.

  8. 8.

    Hille, E., andPhillips, R.,Functional Analysis and Semi-Groups, American Mathematical Society, Providence, Rhode Island, 1957.

  9. 9.

    Sobolev, V. V.,A Treatise on Radiative Transfer, D. Van Nostrand Company, Princeton, New Jersey, 1963.

  10. 10.

    Ambarzumian, V. A.,Diffuse Reflection of Light by a Foggy Medium, Doklady Akademiia Nauk SSSR, Vol. 38, pp. 229, 1943.

  11. 11.

    Golberg, M.,Initial-Value Methods in the Theory of Fredholm Integral Equations, Journal of Optimization Theory and Applications, Vol. 9, pp. 112–119, 1972.

  12. 12.

    Nelson, W.,Existence, Uniqueness, and Stability of Solutions to Chandrasekhar's Integrodifferential Equation for X and Y Functions, Journal of Mathematical Analysis and Applications, Vol. 37, pp. 580–606, 1972.

  13. 13.

    Cochran, J. A.,The Existence of Eigenvalues for the Integral Equations of Laser Theory, Bell System Technical Journal, Vol. 44, pp. 77–88, 1965.

  14. 14.

    Fredholm, I.,Oevres Completes de Ivar Fredholm, Malmo, Lund, Sweden, 1955.

  15. 15.

    Courant, R., andHilbert, D.,Methods of Mathematical Physics, Vol. 2, John Wiley and Sons (Interscience Publishers), New York, New York, 1965.

  16. 16.

    Kalaba, R., andRuspini, E. H.,Invariant Imbedding and Potential Theory, International Journal of Engineering Science, Vol. 7, pp. 1091–1101, 1969.

  17. 17.

    Willers, I. M.,A New Integration Algorithm for Ordinary Differential Equations Based on Continued Fraction Approximations, Communications of the ACM, Vol. 17, pp. 504–510, 1974.

  18. 18.

    Cali, M., Casti, J., andJuncosa, M.,Invariant Imbedding and the Solution of Fredholm Integral Equations with Displacement Kernels—Comparative Numerical Experiments, Applied Mathematics and Computation, Vol. 1, pp. 287–393, 1975.

  19. 19.

    Kagiwada, H., Kalaba, R., andUeno, S.,Multiple Scattering Processes: Inverse and Direct, Addison-Wesley Publishing Company, Reading, Massachusetts, 1975.

  20. 20.

    Sobolev, V. V.,Light Scattering in Planetary Atmospheres, Pergamon Press, Oxford, England, 1975.

  21. 21.

    Kagiwada, H.,System Identification, Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

  22. 22.

    Kailath, T.,Some New Algorithms for Recursive Estimation In Constant Linear Systems, IEEE Transactions on Information Theory, IT-19, pp. 750–760, 1973.

  23. 23.

    Sidhu, G., andCasti, J.,A Rapprochement of the Theories of Radiative Transfer and Linear Stochastic Estimation, Applied Mathematics and Computation, Vol. 1, pp. 295–323, 1975.

  24. 24.

    Conway, W., andThomas, J.,Free Streamline Problems and the Milne-Thompson Integral Equation, Journal of Mathematical and Physical Science, Vol. 8, pp. 67–92, 1975.

  25. 25.

    Koivo, H.,On the Equivalence of Maximum Principle Open-Loop Controllers and the Caratheodory Feedback Controllers for Time-Delay Systems, Journal of Optimization Theory and Applications, Vol. 14, pp. 163–178, 1974.

  26. 26.

    Fleming, H. E., andSmith, W. L.,Inversion Techniques For Remote Sensing of Atmospheric Temperature Profiles, Paper Presented at the Fifth Symposium on Temperature, Washington, DC, 1971.

  27. 27.

    Duncan, L. D.,An Improved Algorithm for the Iterated Minimal Information Solution for Remote Sounding of Temperature, United States Army Electronics Command, Report No. ECOM-5571, 1975.

  28. 28.

    Kagiwada, H., andKalaba, R.,Imbedding Methods for Temperature Retrieval, Nonlinear Analysis, Vol. 1, pp. 65–74, 1976.

Additional Bibliography

  1. 29.

    Kagiwada, H., andKalaba, R.,Direct and Inverse Problems for Integral Equations via Initial Value Methods, SIAM-AMS Symposium on Transport Theory, American Mathematical Society, Providence, Rhode Island, 1967.

  2. 30.

    Kagiwada, H., andKalaba, R.,An Initial Value Method Suitable for the Computation of Certain Fredholm Resolvents, Journal of Mathematical and Physical Sciences, Vol. 1, pp. 109–122, 1967.

  3. 31.

    Kagiwada, H., andKalaba, R.,Initial Value Methods for the Basic Boundary Value Problem and Integral Equations of Radiative Transfer, Journal of Computational Physics, Vol. 1, pp. 322–329, 1967.

  4. 32.

    Kagiwada, H., andKalaba, R.,A New Initial Value Method for Internal Intensities in Radiative Transfer, Astrophysical Journal, Vol. 147, pp. 301–319, 1967.

  5. 33.

    Kagiwada, H., andKalaba, R.,An Initial Value Method for Fredholm Integral Equations of Convolution Type, International Journal of Computer Mathematics, Vol. 2, pp. 143–155, 1968.

  6. 34.

    Kagiwada, H., andKalaba, R.,An Initial Value Method for Nonlinear Integral Equations, Journal of Optimization Theory and Applications, Vol. 12, pp. 329–337, 1973.

  7. 35.

    Kagiwada, H., Kalaba, R., andShumitzky, A.,A Representation for the Solution of Fredholm Integral Equations, Proceedings of the American Mathematical Society, Vol. 23, pp. 37–40, 1969.

  8. 36.

    Golberg, M.,An Initial Value Method for the Computation of the Characteristic Values and Functions of an Integral Operator-II: Convergence, Journal of Mathematical Analysis and Applications, Vol. 49, pp. 773–781, 1975.

  9. 37.

    Golberg, M.,Convergence of an Initial Value Method for Solving Fredholm Integral Equations, Journal of Optimization Theory and Applications, Vol. 12, pp. 344–356, 1973.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kagiwada, H., Kalaba, R. Imbedding methods for integral equations with applications. J Optim Theory Appl 24, 29–57 (1978). https://doi.org/10.1007/BF00933181

Download citation

Key Words

  • Integral equations
  • numerical methods
  • imbedding methods