Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Distribution of lipophosphoglycan-associated epitopes in differentLeishmania species and in African trypanosomes

Abstract

Monoclonal antibody (mAb) CA7AE binds specifically to the phosphorylated Gal-β1,4-Man disaccharide repeat epitope ofLeishmania donovani lipophosphoglycan (LPG). This mAb detected the repeat epitope in most but not all of a wide variety ofLeishmania species and strains examined. MAb CA7AE also bound to both glycoprotein and carbohydrate antigens in medium fromL. donovani promastigote cultures. Specifically, mAb CA7AE bound the delipidated form of LPG, the phosphoglycan, and a glycoprotein both of which are released into the medium by the parasite indicating that both share a specific phosphorylated carbohydrate epitope. The epitope was detected in sera fromL. donovani-infected (kala-azar positive) patients when mAb CA7AE was used in an antigen-capture enzyme-linked immunosorbent assay (ELISA). MAb L157 is specific for a protein that is found associated withL. donovani LPG, the lipophosphoglycan-associated protein (LPGAP). This mAb bound to molecules in all 19 strains (representing 9 species) ofLeishmania promastigotes and to molecules in 2 species ofTrypanosoma procyclic culture forms. This wide distribution of the LPGAP epitope implies that it may have a conserved function, for example, in the biochemistry or arrangement of parasite surface molecules. In addition, since the LPGAP is involved in the stimulation of T lymphocyte proliferation, its wide distribution amongst differentLeishmania species suggests that it may be an ideal molecule for testing as a vaccine for leishmaniasis.

This is a preview of subscription content, log in to check access.

References

  1. Bates PA, Dwyer DM (1987) Biosynthesis and secretion of acid phosphatase byLeishmania donovani promastigotes. Mol Biochem Parasitol 26:289–296

  2. Bates PA, Gottlieb M, Dwyer DM (1988)Leishmania donovani: identification of glycoproteins released by promastigotes during growth in vitro. Exp Parasitol 67:199–209

  3. Bates PA, Hermes I, Dwyer DM (1990) Golgi-mediated post-translational processing of secretory acid phosphatase byLeishmania donovani promastigotes. Mol Biochem Parasitol 39:247–256

  4. Beecroft RP, Roditi I, Pearson TW (1993) Identification and characterization of an acidic major surface glycoprotein from procyclic stageTrypanosoma congolense. Mol Biochem Parasitol 61:285–294

  5. Cunningham I (1973) New culture medium for maintenance of tsetse tissues and growth of trypanosomatids. J Protozool 24:325–329

  6. Dwyer DM (1977)Leishmania donovani; surface membrane carbohydrates of promastigotes. Exp Parasitol 41:341–358

  7. Githure JI, Schnur LF, Le Blancq SM, Hendricks LD (1986) Characterization of KenyanLeishmania spp. and identification ofMastomys natalensis, Taterillus emini, andAethomys kaiseri as new hosts ofLeishmania major. Ann Trop Med Parasitol 80:501–507

  8. Glaser TA, Moody SF, Handman E, Bacic A, Spithill TW (1991) An antigenically distinct lipophosphoglycan on amastigotes ofLeishmania major. Mol Biochem Parasitol 45:337–344

  9. Greenblatt CL, Slutzky GM, De Ibarra AAL, Snary DJJ (1983) Monoclonal antibodies for serotypingLeishmania strains. J Clin Microbiol 18:191–193

  10. Greis KD, Turco SJ, Thomas JR, McConville MJ, Homans SW, Ferguson MAJ (1992) Purification and characterization of an extracellular phosphoglycan fromLeishmania donovani. J Biol Chem 267:5876–5881

  11. Handman E (1986) Leishmaniasis: antigens and host-parasite interactions. In: Pearson TW (ed) Parasite antigens: toward new strategies for vaccines. Marcel Dekker, New York, pp 5–48

  12. Handman E (1990) Study ofLeishmania major-infected macrophages by use of lipophosphoglycan-specific monoclonal antibodies. Infect Immun 58:2297–2302

  13. Handman E, Goding JW (1985) TheLeishmania receptor for macrophages is a lipid containing glycoconjugate. EMBO J 4:329–336

  14. Handman E, Mitchell GFM (1985) Immunization withLeishmania receptor for macrophages protects mice against cutaneous leishmaniasis. Proc Natl Acad Sci USA 82:5910–5914

  15. Handman E, Hocking RE, Mitchell GF, Spithill TW (1983) Isolation and characterization of infective and non-infective clones ofL. major. Mol Biochem Parasitol 7:111–126

  16. Handman E, Greenblatt CL, Goding JW (1984) An amphipathic sulphated glycoconjugate ofLeishmania characterized with monoclonal antibodies. EMBO J 3:2301–2306

  17. Jacobsen RL, Schnur LF, Greenblatt CL (1989) Variation inLeishmania species expressed by antigenic glycoconjugates and excreted factor. In: Hart DT (ed) Leishmaniasis, current status and new strategies for control. (NATO ASI series A, vol 163), Plenum, New York, pp. 401–408

  18. Jaffe CL, Sarfstein R (1987) Species-specific antibodies toLeishmania tropica (minor) recognize somatic antigens and exometabolites. J Immunol 139:1310–1319

  19. Jaffe CL, Perez ML, Schnur LF (1990) Lipophosphoglycan and secreted acid phosphatase ofLeishmania tropica share species-specific epitopes. Mol Biochem Parasitol 41:233–240

  20. Jardim A, Tolson DL, Turco SJ, Pearson TW, Olafson RW (1991) TheLeishmania donovani lipophosphoglycan T-lymphocyte reactive component is a tightly associated protein complex. J Immunol 147:3538–3543

  21. King DL, Turco SJ (1988) A ricin agglutinin-resistant clone ofLeishmania donovani deficient in lipophosphoglycan. Mol Biochem Parasitol 28:285–294

  22. McConville MJ, Thomas-Oates JE, Ferguson MAJ, Homans SW (1990) Structure of the lipophosphoglycan fromLeishmania major. J Biol Chem 265:19611–19623

  23. McNeely TB, Tolson DL, Pearson TW, Turco SJ (1990) Characterization ofLeishmania donovani variant clones using antilipophosphoglycan monoclonal antibodies. Glycobiology 1:63–69

  24. Neva FA, Wyler D, Nash T (1979) Cutaneous Leishmaniasis — a case with persistent organisms after treatment in presence of normal immune response. Am J Trop Med Hyg 28:167–171

  25. Orlandi PA, Turco SJ (1987) Structure of the lipid moiety of theLeishmania donovani lipophosphoglycan. J Biol Chem 262:10384–10391

  26. Richardson JP, Jenni L, Beecroft RP, Pearson TW (1986) Procyclic tsetse fly midgut forms and culture forms of African trypanosomes share stage and species-specific surface antigens recognized by monoclonal antibodies. J Immunol 136:2259–2264

  27. Richardson JP, Beecroft RP, Tolson DL, Liu MK, Pearson TW (1988) Procyclin: an unusual immunodominant surface antigen from the procyclic stage of African trypanosomes. Mol Biochem Parasitol 31:203–216

  28. Schnur LF (1982) The immunological identification and characterization of leishmanial stocks and strains, with special reference to excreted factor serotyping. In: Chance ML, Watson BE (eds) Biochemical characterization ofLeishmania, United Nations Development Programme/World Bank/WHO, Geneva, pp.25–47

  29. Schnur LF, Zuckerman A, Greenblatt CL (1972) Leishmanial serotypes as distinguished by the gel diffusion of factors excreted in vitro and in vivo. Isr J Med Sci 8:932–942

  30. Schnur LF, Sarfstein R, Jaffe CL (1990) Monoclonal antibodies against leishmanial membranes react with specific excreted factors (EF). Ann Trop Med Parasitol 84:447–456

  31. Sigurdson, AG (1992) Structural and functional characterization of the secreted acid phosphatase produced byLeishmania donovani. MSc Thesis, University of Victoria, Victoria, BC, Canada

  32. Tolson DL, Turco SJ, Beecroft RP, Pearson TW (1989) The immunochemical structure and surface arrangement ofLeishmania donovani lipophosphoglycan determined using monoclonal antibodies. Mol Biochem Parasitol 35:109–118

  33. Tolson DL, Turco SJ, Pearson TW (1990) Expression of a repeating phosphorylated disaccharide lipophosphoglycan epitope on the surface of macrophages infected withLeishmania donovani. Infect Immun 58:3500–3507

  34. Turco SJ (1990) The leishmanial lipophosphoglycan: a multifunctional molecule. Exp Parasitol 70:241–245

  35. Turco SJ, Descoteaux A (1992) The lipophosphoglycan ofLeishmania parasites. Annu Rev Microbiol. 46:65–94

  36. Turco SJ, Sacks DL (1991) Expression of a stage-specific lipophosphoglycan inLeishmania major amastigotes. Mol Biochem Parasitol 45:91–100

  37. Turco SJ, Wilkerson MA, Clawson DR (1984) Expression of an unusual acidic glycoconjugate inLeishmania donovani. J Biol Chem 259:3883–3889

  38. Turco SJ, Orlandi PA, Homans SW, Ferguson AJ, Dwek RA, Rademacher TW (1989) Structure of the phosphosaccharide-inositol core of theLeishmania donovani lipophosphoglycan. J Biol Chem 264:6711–6715

Download references

Author information

Correspondence to Terry W. Pearson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tolson, D.L., Schnur, L.F., Jardim, A. et al. Distribution of lipophosphoglycan-associated epitopes in differentLeishmania species and in African trypanosomes. Parasitol Res 80, 537–542 (1994). https://doi.org/10.1007/BF00932704

Download citation

Keywords

  • Carbohydrate
  • Monoclonal Antibody
  • Immunosorbent Assay
  • Wide Distribution
  • Disaccharide