Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Theoretical calculation of spin-spin interaction in the NMR spectra of a peptide fragment

Communication 2. Possibilities for conforma.tional analysis of peptides and proteins in solutions; Vicinal constants of1H-15N and13C-15N for the angle Ψ

  • 25 Accesses

  • 4 Citations

Conclusions

  1. 1.

    The spin-spin interaction constants (SSIC) in NMR spectra provide the theoretical possibility of complete conformational analysis of peptides and proteins in solution.

  2. 2.

    Of special interest are the SSIC with the participation of13C and15N nuclei, since selective isotopic substitution permits the isolation of the fragments of interest in complex NMR spectra of peptides and especially proteins.

  3. 3.

    It is necessary to find the optimum set of SSIC sufficient for a complete conformational analysis of peptides and proteins. The first stage in such a search consists of the theoretical calculation of the SSIC in a peptide fragment.

  4. 4.

    Quantum chemical calculation of the vicinal SSIC of1H-Cα-C′(O)-15N and13Cβ-α-C′(O)15N reveals their dependence on the angle Ψ, characterizing the rotational state of the Cα-C′(O) bond. The next step should consist of correction of the angular dependences of these SSIC according to the experimental values for conformationally rigid peptide systems.

  5. 5.

    The joint use of these constants and the SSIC of1H-N-Cα-1H, as well as the conformational energy maps, is extremely promising for the investigation of the three-dimensional structure of peptide systems.

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    V. N. Solkan and V. F. Bystrov, Tetrahedron Letters, 2261 (1973).

  2. 2.

    IUPAC-IUB Commission on Biochemical Nomenclature; J. Mol. Biol.,52, 1 (1970); J. Biol. Chem.,245, 6489 (1970); Biochemistry,9, 3471 (1970); Europ. J. Biochem.,17, 193 (1970).

  3. 3.

    V. F. Bystrov, Uspekhi Khimii,41, 512 (1972).

  4. 4.

    V. F. Bystrov, V. T. Ivanov, S. L. Portnova, T. A. Balashova, and Yu. A. Ovchinnikov, Tetrahedron,29, 873 (1973).

  5. 5.

    V. T. Ivanov, I. A. Laine, N. D. Abdullaev, V. Z. Pletnev, G. M. Lipkind, S. F. Arkhipova, L. B. Senyavina, E. N. Meshcheryakova, E. M. Popov, V. F. Bystrov, and Yu. A. Ovchinnikov, Khimiya Prirodn. Soed., 221 (1971).

  6. 6.

    V. T. Ivanov, I. A. Laine, N. D. Adbullaev, L. B. Senyavina, E. M. Popov, Yu. A. Ovchinnikov, and M. M. Shemyakin, Biochem. and Biophys. Res. Communs.,34, 803 (1969).

  7. 7.

    Yu. A. Ovchinnikov, V. T. Ivanov, V. F. Bystrov, A. I. Miroshnikov, E. N. Shepel, N. D. Abdullaev, E. S. Efremov, and L. B. Senyavina, Biochem. and Biophys. Res. Communs.,39, 217 (1970).

  8. 8.

    M. Llinas, M. P. Klein, and J. B. Neilands, J. Molec. Biol.,52, 399 (1970);68, 265 (1972); A, Zalkin, J. D. Forrester, and D. H. Templeton, J. Amer. Chem. Soc,89, 1810 (1966).

  9. 9.

    D. A. Torchia, A. di Corato, S. C. K. Wong, C. M. Deber, and E. R. Blout, J. Amer. Chem. Soc,94, 609 (1972); A. E. Tonelli, J. Amer. Chem. Soc,94, 346 (1972).

  10. 10.

    H. Lackner, Tetrahedron Letters, 2221 (1971); P. De Santis, R. Rizzo, and G. Ughetto, Biopolymers,11, 279 (1972).

  11. 11.

    K. D. Kopple, G. R. Wiley, and R. Tauke, Biopolymers,12, 627 (1973).

  12. 12.

    M. Barfield and H. L. Gearhart, J. Amer. Chem. Soc,95, 641 (1973); C. Giessner-Prettre, Compt. Rend., D276, 1045 (1973).

  13. 13.

    S. Karplus and M. K. Karplus, Proc. Nat. Acad. Sci. USA,69, 3204 (1972).

  14. 14.

    J. A. Pople, J. W. Mclver, Jr., and N. S. Ostlund, J. Chem. Phys.,49, 2960, 2965 (1968).

  15. 15.

    A. C. Blizzard and D. P. Santry, J. Chem. Phys.,55, 950 (1971).

  16. 16.

    E. M. Popov, G. M. Lipkind, S. F. Arkhipova, and V. G. Dashevskii, Molekul. Biol.,2, 622 (1968).

  17. 17.

    G. E. Maciel, J. W. Mclver, Jr., N. S. Ostlund, and J. A. Pople, J. Amer. Chem. Soc.,92, 4497 (1970).

  18. 18.

    M. Liler, J. Magnetic Resonance,5, 333 (1971).

  19. 19.

    W. A. Gibbons, G. Nemethy, A. Stern, and L. C. Craig, Proc. Nat. Acad. Sci. USA,67, 239 (1970).

  20. 20.

    V. T. Ivanov, P. V. Kostetskii, E. A. Meshcheryakova, E. S. Efremov, E. M. Popov, and Yu. A. Ovchinnikov, Khimiya Prirodn. Soed., 363 (1973).

Download references

Author information

Additional information

Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 102–109, January, 1974.

For communication 1, see [1].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solkan, V.N., Bystrov, V.F. Theoretical calculation of spin-spin interaction in the NMR spectra of a peptide fragment. Russ Chem Bull 23, 95–100 (1974). https://doi.org/10.1007/BF00922321

Download citation

Keywords

  • Peptide
  • Theoretical Calculation
  • Quantum Chemical Calculation
  • Chemical Calculation
  • Angular Dependence