Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Possible involvement of microtubules in platelet-activating factor-induced increases in microvascular permeability in vitro

  • 30 Accesses

  • 10 Citations


The blood vessels of the rat small intestine were perfused in vitro with a gelatin-containing physiological salt solution (GPSS). The addition of platelet-activating factor (PAF, 5μM), podophyllotoxin (50μM), colcemid (50μM), or nocodazole (50μM) to the GPSS for 5 min caused an increase in vascular permeability. This was manifested as an increased trapping of circulating colloidal carbon (CC) within the walls and was assessed using semiautomated image analysis. Pretreatment for 10 min with taxol (5μM) in the perfusate significantly reduced the permeability-enhancing effects of all four agonists. Since podophyllotoxin, colcemid, and nocodazole are all microtubule-disrupting agents, and since taxol is a microtubule-stabilizing agent, these results suggest that microtubules are involved in the response of the microvessels to PAF. An explanation based on “tensegrity” or “force-counterbalance” is put forward to account for these findings.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kolodney, M. S., andR. B. Wysolmerski. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: A quantitative study.J. Cell Biol. 117:73–82.

  2. 2.

    De Brabander, M. J., R. M. L. Van De Veire, F. E. M. Aerts, M. Borgers, andP. A. J. Janssen. 1976. The effects of methyl [5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl] carbamate, (R17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro.Cancer Res. 36:905–916.

  3. 3.

    Schiff, P. B., andS. B. Horwitz. 1980. Taxol stabilizes microtubules in mouse fibroblast cells.Proc. Natl. Acad. Sci. U.S.A. 77:1561–1565.

  4. 4.

    Joris, I., G. Majno, andG. B. Ryan. 1972. Endothelial contraction in vivo: A study of the rat mesentery.Virchows Arch. Abt. B Zellpathol. 12:73–83.

  5. 5.

    Grigorian, G. Y., andU. S. Ryan. 1987. Platelet-activating factor effects on bovine pulmonary artery endothelial cells.Circ. Res. 61:389–395.

  6. 6.

    Shasby, D. M., S. S. Shasby, J. M. Sullivan, andM. J. Peach. 1982. Role of endothelial cell cytoskeleton in control of endothelial permeability.Circ. Res. 51:657–661.

  7. 7.

    Alexander, J. S., H. B. Hechtman, andD. Shepro. 1988. Phalloidin enhances endothelial barrier function and reduces inflammatory permeability in vitro.Microvasc. Res. 35:308–315.

  8. 8.

    Morel, N. M. L., A. B. Dodge, W. F. Patton, I. M. Herman, H. B. Hechtman, andD. Shepro. 1989. Pulmonary microvascular endothelial cell contractility on silicone rubber substrate.J. Cell. Physiol. 141:653–659.

  9. 9.

    Northover, A. M. 1975. Action of histamine on endothelial cells of guinea pig isolated hepatic portal vein and its modification by indomethacin or removal of calcium.Br. J. Exp. Pathol. 56:52–61.

  10. 10.

    Northover, A. M., andB. J. Northover. 1987. Changes of vascular endothelial cell shape and of membrane potential in response to the ionophore A23187.Int. J. Microcirc. Clin. Exp. 6:137–148.

  11. 11.

    Northover, A. M. 1992. In vitro effects of PAF on venous endothelial cell actin disposition.Agents Actions 35:40–49.

  12. 12.

    Northover, A. M. 1993. An in vitro method for assessing the effects of pro-inflammatory and anti-inflammatory compounds on microvascular permeability in the rat small intestine.J. Pharmacol. Toxicol. Methods 29:227–232.

  13. 13.

    Loike, J. D., andS. B. Horwitz. 1976. Effects of podophyllotoxin and VP-16-213 on microtubule assembly in vitro and nucleoside transport in HeLa cells.Biochemistry 15:5435–5443.

  14. 14.

    Heggeness, M. H., M. Simon, andS. J. Singer. 1978. Association of mitochondria with microtubules in cultured cells.Proc. Natl. Acad. Sci. U.S.A. 75:3863–3866.

  15. 15.

    Forbes, E. J. 1955. Colchicine and related compounds. Part XIV. Structure ofβ-andγ-lumicolchicine.J. Chem. Soc. 1955:3864–3870.

  16. 16.

    Klein, I. 1983. Colchicine stimulates the contraction of heart cells in culture.Cardiovasc. Res. 17:459–465.

  17. 17.

    Danowski, B. A. 1989. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors.J. Cell Sci. 93:255–266.

  18. 18.

    Joshi, H. C., D. Chu, R. E. Buxbaum, andS. R. Heidemann. 1985. Tension and compression in the cytoskeleton of PC 12 neurites.J. Cell Biol. 101:697–705.

  19. 19.

    Fulton, A. B., andW. B. Isaacs 1986. Possible tensegrity models for the cytoskeleton.J. Cell Biol. 103:409a.

  20. 20.

    Dennerll, T. J., H. C. Joshi, V. L. Steel, R. E. Buxbaum, andS. R. Heidemann. 1988. Tension and compression in the cytoskeleton of PC-12 neurites II: Quantitative measurements.J. Cell Biol. 107:665–674.

  21. 21.

    Buxbaum, R. E., andS. R. Heidemann. 1988. A thermodynamic model for force integration and microtubule assembly during axonal elongation.J. Theor. Biol. 134:379–390.

  22. 22.

    Schliwa, M. 1986. The Cytoskeleton. An Introductory Survey. Springer-Verlag, Wein.

  23. 23.

    Schliwa, M. 1980. Pharmacological evidence for an involvement of calmodulin in calciuminduced microtubule disassembly in lysed tissue culture cells.In Microtubules and Microtubule Inhibitors. M. De Brabander and J. De Mey, editors. Elsevier/North Holland Biomedical Press, Amsterdam. 57–70.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Northover, A.M., Northover, B.J. Possible involvement of microtubules in platelet-activating factor-induced increases in microvascular permeability in vitro. Inflammation 17, 633–639 (1993). https://doi.org/10.1007/BF00920470

Download citation


  • Public Health
  • Internal Medicine
  • Blood Vessel
  • Image Analysis
  • Small Intestine