Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular mechanisms of posterior vitreous detachment

Abstract

To determine a molecular mechanism for posterior vitreous detachment and contraction of vitreous gel, the effects of serum components on bovine vitreous were systematically studied. Incubation of vitreous gel with calf serum caused a contraction of the gel accompanied by the release of a waterlike liquid. The low molecular weight fraction (M r < 10000) of serum was ineffective in this process, whereas incubation of the vitreous with the high molecular weight fraction resulted in changes in the gel structure similar to those caused by serum alone. Individually, transglutaminase (factor XIIIa) was found to be most effective in inducing gel contraction. The effect was more pronounced when transglutaminase was used with fibronectin. Since transglutaminase is known to promote collagen-collagen or collagen-fibronectin-collagen cross-links, the contraction of the vitreous in this case can be attributed to the formation of similar cross-links.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Akiba J (1992) Photodynamically induced vitreous liquefaction in vivo. Acta Soc Ophthalmol Jpn 96:731–736

  2. 2.

    Akiba J, Arzabe CW, Trempe CL (1990) Posterior vitreous detachment and neovascularization in diabetic retinopathy. Ophthalmology 97:889–891

  3. 3.

    Akiba J, Kado M, Kakehashi A, Trempe CL (1991) Role of the vitreous in posterior segment neovascularization in central retinal vein occlusion. Ophthalmic Surg 22:498–502

  4. 4.

    American Society for Testing Materials (ASTM) (1986) Standard test method for penetration of bituminous materials, D 5-86. ASTM, Philadelphia

  5. 5.

    Andley U, Chakrabarti B (1983) Role of singlet oxygen in the degradation of hyaluronic acid. Biochem Biophys Res Commun 115:894–901

  6. 6.

    Balazs EA, Denlinger JL (1984) The vitreous. In: Davson H (ed) The eye. Academic Press, London, pp 553–589

  7. 7.

    Balazs EA, Denlinger JL (1982) Aging changes in the vitreous. In: Sekuler R, Kline D, Dismukes K (eds) Aging and human visual functions. Liss, New York, pp 45–57

  8. 8.

    Berman ER, Voaden M (1968) The vitreous body. In: Graymore CN (ed) Biochemistry of the eye. Academic Press, London, pp 373–471

  9. 9.

    Chakrabarti B, Park JW (1980) Glycosaminoglycans — structure and interaction. Crit Rev Biochem 8:225–313

  10. 10.

    Chattopadhyay D, Akiba J, Ueno N, Chakrabarti B (1991) Metal ion-catalyzed liquefaction of vitreous by ascorbic acid: role of radicals and radical ions. Ophthalmic Res 24:1–7

  11. 11.

    Comper WD, Laurent C (1978) Physiological function of connective tissue polysaccharides. Physiol Rev 58:255–315

  12. 12.

    Cuhna-Vaz J, Faria de Abreu JR, Campos AJ, Figo GN (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59:649–656

  13. 13.

    Davis MD (1965) Vitreous contraction in proliferative diabetic retinopathy. Arch Ophthalmol 74:741–751

  14. 14.

    Folk JE (1983) Mechanism and basis for specificity of transglutaminase catalyzed ε-(γ-glutamyl) lysine bond formation. Adv Enzymol 54:1–56

  15. 15.

    Folk JE, Chung SL (1973) Molecular and catalytic properties of transglutaminase. Adv Enzymol 38:109–190

  16. 16.

    Folk JE, Finlayson JS (1977) The ε-(γ-glutamyl) lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem 31:1–133

  17. 17.

    Folk JE, Chung SL (1985) Transglutaminase. Methods Enzymol 113:358–375

  18. 18.

    Foos RY, Wheeler NC (1982) Vitreoretinal juncture — synchysis senilis and posterior vitreous detachment. Ophthalmology 89:1502–1512

  19. 19.

    Kakehashi A, Ueno N, Chakrabarti B, Trempe CL (1992) Effects of photochemical reaction of hematoporphyrin on vitreous gel structure. Invest Ophthalmol Vis Sci [Suppl] 33:1191

  20. 20.

    Kohno T, Sorgente N, Goodnight R, Ryan SJ (1987) Alternations in the distribution of fibronectin and laminin in the diabetic human eye. Invest Ophthalmol Vis Sci 28:515–521

  21. 21.

    Kohno T, Sorgente N, Ishibashi T, Goodnight R, Ryan SJ (1987) Immunofluorescent studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci 28:506–514

  22. 22.

    Larsson L, Osterlin S (1985) Posterior vitreous detachment: a combined clinical and physiochemical study. Graefes Arch Clin Exp Ophthalmol 223:92–95

  23. 23.

    Lindner B (1966) Acute posterior vitreous detachment and its retinal complications. Acta Ophthalmol [Suppl] 87:1–108

  24. 24.

    Mosher DF, Schad PE, Kleinman HK (1979) Cross-linking of fibronectin to collagen by blood coagulation factor XIIIa. J Clin Invest 64:781–787

  25. 25.

    Mosher DF, Schad PE, Vann JM (1980) Cross-linking of collagen and fibronectin by factor XIIIa. J Biol Chem 255:1181–1188

  26. 26.

    McDonagh J (1987) Structure and function of Factor XIII. In: Colman RW, Hirsh J, Marder VJ, Salzman EW (eds) Hemostasis and thrombosis, 2nd edn. Lippincott, Philadelphia, pp 289–300

  27. 27.

    Nasrallah F, Ueno N, Chakrabarti B, Jalkh AE, Trempe CL, Frangieh G, Cialdini A, McMeel JW (1989) Can the neodymium:YAG photodisruptor liquefy the vitreous? Ophthalmic Laser Ther 3:63–69

  28. 28.

    Noether GE (1991) Introduction to statistics, the nonparametric way. Springer, Berlin Heidelberg New York

  29. 29.

    Park JW, Chakrabarti B (1978) Optical properties and viscosity of hyaluronic acid in mixed solvents: evidence of conformational transition. Biopolymer 17:1323–1333

  30. 30.

    Ruoslahti E, Haymain EG, Pierschbacher M, Engvall E (1982) Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol 82:803–831

  31. 31.

    Sebag J (1989) The vitreous. Springer, Berlin Heidelberg New York

  32. 32.

    Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

  33. 33.

    Soria A, Soria C, Boulard C (1975) Fibrin stabilizing factor (FXIII) and collagen polymerization. Experientia 31:1355–1357

  34. 34.

    Sprent P (1989) Applied nonparametric statistical methods. Chapman and Hall, New York, pp 135–164

  35. 35.

    Swann D (1980) Chemistry and biology of the vitreous body. Int Rev Exp Pathol 22:1–64

  36. 36.

    Takahashi M (1982) Posterior vitreous detachment as aging process: analysis of 1077 normal eyes. Jpn J Clin Ophthalmol 36:1137–1141

  37. 37.

    Takahashi M, Trempe CL, Maguire K, McMeel JW (1981) Vitreoretinal relationship in diabetic retinopathy: a biomicroscopic evaluation. Arch Ophthalmol 99:241–245

  38. 38.

    Tolentino Fl, Lee PF, Schepens CL (1966) Biomicroscopic study of vitreous cavity in diabetic retinopathy. Arch Ophthalmol 75:238–246

  39. 39.

    Tolentino FI, Schepens CL, Freeman HM (1976) Posterior vitreous detachment. In: Vitreoretinal disorders — diagnosis and management. Saunders, Philadelphia, pp 130–150

  40. 40.

    Ueno N, Chakrabarti B (1990) Liquefaction of human vitreous by N-formylkynurenine type photosensitizer in model aphakic eyes: monitoring liquefaction by fluorescence. Curr Eye Res 9:487–492

  41. 41.

    Ueno N, Sebag J, Hirokawa H, Chakrabarti B (1987) Effects of visible light irradiation on vitreous structure in the presence of a photosensitizer. Exp Eye Res 44:863–870

  42. 42.

    Ueno N, Watanabe M, Chakrabarti B (1991) Biochemistry of vitreous non-collagenous protein: a review. Folia Ophthalmol Jpn 42:983–991

  43. 43.

    Watanabe M, Watanabe K, Ueno N (1991) Collagen-binding proteins of vitreous: isolation and characterization. Invest Ophthalmol Vis Sci [Suppl] 32:1011

Download references

Author information

Correspondence to Bireswar Chakrabarti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akiba, J., Ueno, N. & Chakrabarti, B. Molecular mechanisms of posterior vitreous detachment. Graefe's Arch Clin Exp Ophthalmol 231, 408–412 (1993). https://doi.org/10.1007/BF00919650

Download citation

Keywords

  • Public Health
  • Molecular Weight
  • Molecular Mechanism
  • High Molecular Weight
  • Calf Serum