Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Strength of aluminum under compression in a shock

  • 30 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    D, R, Curran, “Nonhydrodynamic attenuation of shock waves in aluminum,” J. Appl. Phys.,34, No, 9 (1963).

  2. 2.

    J. O. Erkman and A. B. Christensen, “Attenuation of shock waves in aluminum,” J. Appl. Phys.,38, No. 13 (1967).

  3. 3.

    S. A. Novikov and L. M. Sinitsyna, “On the influence of shock compression pressure on the magnitude of critical shear stresses in metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1970).

  4. 4.

    L. V. Al'tshuler, M. P. Brazhnik, and G. S. Telegin, “Strength and elasticity of iron and copper at high shock compression pressures,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1971).

  5. 5.

    L. M. Barker, “Fine structure of compressive and release wave shapes in aluminum measured by the velocity interferometer technique, “Preprints of Symp. on High Dynamic Pressure, Paris, Sept. 11–15, 1967.

  6. 6.

    A. A. Vorob'ev, A. N. Dremin, and G. I. Kanel', “Dependence of the aluminum elasticity coefficients on degree of compression in a shock,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1974).

  7. 7.

    P. J. A. Fuller and J. H. Price, “Dynamic stress” strain release paths for aluminum and magnesium measured to 200 kV,” Brit. J. Appl. Phys.,2, Ser. 2 (1969).

  8. 8.

    A. N. Dremin and G. I. Kanel', “Compression and rarefaction waves in shock compressed metals,” Prikl. Mekh. Tekh. Fiz., No. 2 (1976).

  9. 9.

    D. D. Gilman, “Dislocation dynamics and behavior of materials under shock action,” in: Mechanics [Russian translation], No. 2 (1970).

  10. 10.

    J. N. Johnson and L. M. Barker, “Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum,” J. Appl. Phys.,40, No. 11 (1969).

  11. 11.

    R. I. Nigmatulin and N. N. Kholin, “Yield lag and hardening in the high-speed deformation of metals,” Dokl. Akad. Nauk SSSR,209, No. 1 (1973).

  12. 12.

    R. I. Nigmatulin, P. B. Vainshtein, N. N. Kholin, N. Kh. Akhmadeev, and V. P. Myasnikov, “Numerical modeling of physicochemical processes and shock propagation in solids and composites,” in: Numerical Methods of the Mechanics of Continuous Media [in Russian], Vol.7, No. 2, Novosibirsk (1976).

  13. 13.

    A. I. Gulidov, V. M. Fomin, and N. N. Yanenko, “Compression wave structure in inelastic media,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1975).

  14. 14.

    G. R. Fowles, G. E. Duvall, J. Asay, P. Bellamy, F. Fristman, D. Grady, T. Mitchaels, and R. Mitchell, “Gas gun for impact studies,” Rev. Sci. Instrum.,41, No. 7 (1970).

  15. 15.

    A. G. Ivanov and S. A. Novikov, “Capacitive transducer method for recording the instantaneous velocity of a moving surface,” Prib. Tekh. Eksp., No. 1 (1963).

  16. 16.

    M. H. Rice, “Capacitor technique for measuring the velocity of a plane conducting surface,” Rev. Sci. Instrum.,32, No. 4 (1961).

  17. 17.

    O. E. Jones, F. W. Neilson, and W. B. Benedick, “Dynamic field behavior of explosively loaded metals determined by a quartz transducer technique,” J. Appl. Phys.,33, No. 11 (1962).

  18. 18.

    P. J. A. Fuller and J. H. Price, “Dynamic pressure measurements to 300 kbar with resistance transducer, “ Brit. J. Appl. Phys.,15, No. 6 (1964).

  19. 19.

    G. I. Kanel', “Application of Manganin transducers to measure the shock compression pressure of condensed media,” Preprint Inst. Khim. Fiz. Akad. Nauk SSSR, Chernogolovka (1973).

  20. 20.

    R. A. Graham, F. W. Neilson, and W. B. Benedick, “Piezoelectric current from shock-loaded quartz in a submicrosecond stress gauge,” J. Appl. Phys.,36, No. 5 (1965).

  21. 21.

    T. E. Arwidsson, Y. M. Gupta, and G. E. Duvall, “Precursor decay in 1060 aluminum,” J. Appl. Phys.,46, No. 10 (1975).

  22. 22.

    J. W. Taylor and M. H. Rice, “Elastic properties of iron,” J. Appl. Phys.,34, No. 2 (1963).

  23. 23.

    Yu. N. Tyunyaev and V. N. Mineev, “Elastic stress relaxation mechanism in the shock compression of doped silicon,” Fiz. Tverd. Tela,17, No. 10 (1975).

  24. 24.

    Y. M. Gupta and G. R. Fowles, “Shock-induced dynamic yielding in lithium fluoride single crystals. Metallurgical effects at high strain rates,” AIME, New York-London (1973).

  25. 25.

    R. Richtmayer and K. Morton, Difference Methods of Solving Boundary-Value Problems [Russian Translation], Mir, Moscow (1972).

  26. 26.

    M. L. Wilkins, “Analysis of elastic-plastic flows,” in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).

  27. 27.

    S. M. Bakhrakh and N. P. Kovalev, “Application of the splitting method to analyze elastic — plastic flows,” Trans, of the Second All-Union Conference on Numerical Methods of Solving Problems of the Theory of Elasticity and Plasticity [in Russian], Novosibirsk (1971).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 137–143, March–April, 1980.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bakhrakh, S.M., Ivanov, A.G., Kovalev, N.P. et al. Strength of aluminum under compression in a shock. J Appl Mech Tech Phys 21, 271–276 (1980).

Download citation


  • Aluminum
  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic