Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Explanation of the Toms effect in terms of the viscosity anisotropy of the solution

  • 109 Accesses

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. A. Toms, “Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds number,” Proc. 1-st Inter. Rheol. Congr. 1948, Holland, North Holland Publishing Co., Amsterdam, 1949.

  2. 2.

    D. W. Dodge and A. B. Metzner, “Turbulent flow of non-Newtonian systems,” A. J. Ch. E. Journal., vol. 5, no. 2, 1959.

  3. 3.

    R. G. Shaver and E. M. Merrill, “Turbulent flow of pseudoplastic polymer solutions in straight cylindrical tubes,” A. J. Ch. E. Journal, vol. 5, no. 2, 1959.

  4. 4.

    A. B. Metzner and M. G. Park, “Turbulent flow characteristics of viscoelastic fluids,” J. Fluid Mech., vol. 20, no. 2, 1964.

  5. 5.

    A. G. Fabula, “The Toms phenomenon in the turbulent flow of very dilute polymer solutions,” Proc. 4-th Internat. Congr. Rheol., 1963, pt. 3, New York-London-Sydney, Interscience, 1965.

  6. 6.

    J. W. Hoyt and A. G. Fabula, “The effect of additives on fluid friction,” 5-th Sympos. Naval. Hydrodynam. Ship Motions and Drag Reduct., Bergen, 1964, Washington, D. C., Office Naval Res. -Dept. Navy, 1966.

  7. 7.

    G. F. Kobets, V. S. Zav'yalova, and M. L. Komarova, “Effect of fish mucus on turbulent flow,” collection: Hydrodynamic Problems of Bionics [in Russian], Kiev, 1968.

  8. 8.

    A. J. Bobkowicz and W. G. Gauvin, “The turbulent flow characteristics of model fibre suspensions,” Canad. J. Chem. Engng., vol. 43, no. 2, 1965.

  9. 9.

    C. Elata, J. Lehrer, and A. Kahanovitz, “Turbulent shear flow of polymer solutions,” Israel J. Technology, vol. 4, no. 1, 1966.

  10. 10.

    D. N. Jackley, “Drag-reducing fluids in a free turbulent jet,” Internat. Shipbuild. Prog, vol. 14, no. 152, 1967.

  11. 11.

    F. A. Seyer and A. B. Metzner, “Turbulent flow properties of viscoelastic fluids,” Canad. J. Chem. Eng., vol. 45, no. 3, 1967.

  12. 12.

    G. F. Kobets, “The mechanism of the effect of dissolved macromolecules on a turbulent flow,” collection: Hydrodynamic Problems of Bionics [in Russian], Kiev, 1968.

  13. 13.

    V. N. Tsvetkov, V. E. Eskin, and S. Ya. Frenkel, Structure of Macromolecules in Solutions [in Russian], Nauka Moscow, 1964.

  14. 14.

    V. Kuhn, H. Kuhn, and P. Buchner, “Hydrodynamiches Verhalten von Makromolekülen in Lösungen, Ergebn. exakt. Naturwiss, 25, 1951.

  15. 15.

    E. M. Khabakhpasheva and B. V. Perepelitsa, “Fields of velocities and turbulent pulsations that occur when small amounts of high-molecular substances are added to water,” Inzh-fiz. zh. [Journal of Engineering Physics], vol. 14, no. 4, 1968.

  16. 16.

    J. O. Hinze, Turbulence [Russian translation], Fizmatgiz, Moscow, 1963.

  17. 17.

    H. Schlichting, Boundary Layer Theory [Russian translation], Izd-vo inostr. lit., Moscow, 1956.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kobets, G.F. Explanation of the Toms effect in terms of the viscosity anisotropy of the solution. J Appl Mech Tech Phys 10, 108–112 (1969). https://doi.org/10.1007/BF00916263

Download citation

Keywords

  • Viscosity
  • Anisotropy
  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic