Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Steady flow of a vibrationally excited gas of diatomic molecules

  • 22 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    E. A. Buyanova, E. E. Lovetskii, et al., “Steady shock waves in a nonequilibrium diatomic gas,” Khim. Fiz., No. 12 (1982).

  2. 2.

    F. G. Baksht and G. I. Mishin, “Effect of vibrational relaxation on the parameters of shock waves in a plasma of molecular gases,” Zh. Tekh. Fiz.,53, No. 5 (1983).

  3. 3.

    A. A. Rukhadze, V. P. Silakov, and A. V. Chebotarev, “Propagation of unsteady shock waves in vibrationally excited nitrogen,” Kratk. Soobshch. Fiz., No. 6 (1983).

  4. 4.

    V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasmas [in Russian], Nauka, Moscow (1984).

  5. 5.

    A. I. Osipov and A. V. Uvarov, “Structure of shock waves in a nonequilibrium vibrationally excited gas,” Khim. Fiz., No. 11 (1984).

  6. 6.

    V. P. Silakov and V. S. Fetisov, “Shock waves in a nonequilibrium weakly dissociated gas of diatomic molecules with excited vibrational degrees of freedom,” Khim. Fiz., No. 1 (1983).

  7. 7.

    A. A. Vedenov, S. V. Drobyazko, et al., “Effect of acoustic waves in a discharge gap on the working of a pulse CO2 laser in a special case,” Teplofiz. Vys. Temp.,13, No. 2 (1975).

  8. 8.

    K. I. Shchelkin and Ya. K. Troshin, Gasdynamics of Combustion [in Russian], Izd. Akad. Nauk SSSR, Moscow (1963).

  9. 9.

    B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers [in Russian], Nauka, Moscow (1980).

  10. 10.

    Yu. S. Akishev, A. V. Dem'yanov, et al., “Determination of the constants of vibrational exchange in N2 by heating,” Teplofiz. Vys. Temp.,20, No. 5 (1982).

  11. 11.

    L. A. Vasil'ev, I. V. Ershov, and S. S. Semenov, “Experimental study of nonequilibrium processes behind shock waves in air and nitrogen by the shadow method,” Dokl. Akad. Nauk SSSR,186, No. 5 (1969).

  12. 12.

    A. Kantrowitz and P. W. Huber, “Heat-capacity lag measurements in various gases,” J. Chem. Phys.,15, No. 5 (1947).

  13. 13.

    A. Yu. Zakharov and V. I. Turchaninov, “STIFF program for the solution of stiff systems of ordinary differential equations,” Inst. Appl. Math. Manual (1977).

  14. 14.

    R. C. Millikan and D. R. White, “Vibrational energy exchange between N2 and CO. The vibrational relaxation of nitrogen,” J. Chem. Phys.,39, No. 1 (1963).

  15. 15.

    R. E. Center and J. F. Newton, “Vibrational relaxation of N2 by H2O,” J. Chem. Phys.,68, No. 8 (1978).

  16. 16.

    A. P. Zuev and B. K. Tkachenko, “Determination of the relaxation time of the level v=1 of N2 in the presence of water vapor,” Izv. Vyssh. Uchebn. Zaved., Fiz.,193, No. 6 (1978).

  17. 17.

    S. I. Gritsinin, I. A. Kossyi, et al., “Dynamics of vibrational excitation and heating of nitrogen during and after a UHF pulse discharge,” Teplofiz. Vys. Temp.,22, No. 4 (1984).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 13–19, September–October, 1986.

The authors thank I. A. Kossyi for constant interest in the work and for useful discussions, and also S. S. Filippov for help in doing our numerical calculations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Silakov, V.P., Chebotarev, A.V. Steady flow of a vibrationally excited gas of diatomic molecules. J Appl Mech Tech Phys 27, 637–642 (1986). https://doi.org/10.1007/BF00916131

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Steady Flow
  • Diatomic Molecule