Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Peripheral blood and intrarenal phagocytic chemiluminescence during acute kidney graft rejection

Abstract

During organ graft rejection, soluble mediators of inflammation are released into the polymorphs (PMNs) and monocytes recruited from the blood. One functional capacity of polymorphs and monocytes/macrophages is the production of cytotoxic activated oxygen species upon stimulation, which may contribute to the rejection process. Nothing is known about the influence of allograft rejection on this inflammatory cell property. Chemiluminescence (CL) allows measurement of respiratory burst capacity in small cell samples. Zymosan-induced and luminol-amplified CL of diluted whole blood, separated PMNs, and mononuclear cells from peripheral venous blood, as well as of intragraft phagocytes was measured after allogeneic and autologous kidney transplantation in untreated dogs, CL of separated PMNs, mononuclear cells, and intragraft phagocytes was significantly elevated during allograft rejection. In autologous kidneys transplanted to recipients of allografts, CL was also increased in the autologous grafts during rejection of the allogeneic ones, indicating a systemic alteration in phagocyte function.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Allen, R. C., andL. D. Loose. 1976. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages.Biochem. Biophys. Res. Commun. 69:245–252.

  2. 2.

    Lomnitzer, R., A. Glover, andA. R. Rabson. 1977. The effect of PHA-activated MN-cell supernatants on polymorphonuclear leukocyte function.Clin. Exp. Immunol. 29:501–508.

  3. 3.

    Coleman, D. L., K. E. Culver, andJ. L. Ryan. 1984. Enhancement of macrophage immune and nonimmune receptor-mediated phagocytosis by a low-molecular-weight soluble factor from resident thymocytes.J. Immunol. 133:3121–3127.

  4. 4.

    Vadas, M. A., N. Nicola, A. F. Lopez, D. Metcalf, G. Johnson, andA. Pereira. 1984. Mononuciear cell-mediated enhancement of granulocyte function in man.J. Immunol. 133:202–207.

  5. 5.

    Weisbart, R. H., D. W. Golde, S. C. Clark, G. G. Wang, andJ. C. Gasson. 1985. Human granulocyle-macrophage colony-stimulating factor is a neutrophil activator.Nature 314:361–363.

  6. 6.

    Pace, J. L., S. W. Russell, R. D. Schreiber, A. Altmann, andD. H. Katz. 1982. Macrophage activation: Prirning activity from a T-cell hybridoma is attributable to interferon-γ.Proc. Natl. Acad. Sci. U.S.A. 80:3782–3786.

  7. 7.

    Nathan, C. F., H. W. Murray, M. E. Wiebe, andB. Y. Rubin. 1983. Identification of intetferon-γ as the lymphokine that activates human macrophage oxidation metabolism and antimicrobial activity.J. Exp. Med. 158:670–689.

  8. 8.

    Cross, A. S., andG. H. Lowell. 1978. Stimulation of polymorphonuclear bactericidal activity by supernatants of activated human mononuclear cells.Infect. Immunity 22:502–507.

  9. 9.

    Pichlmayr, R., andG. Tidow. 1981. Operationsmethoden und Operationstechnik-Standardverfahren. In Transplantationschirurgie. R. Pichlmayr, editor. Springer, Berlin, 529–568.

  10. 10.

    HĀyry, P., E. v. Willebrand, J. Ahonen, E. Eklund, andI. Lautenschlager. 1981. Monitoring of organ allograft rejection by transplant aspiration cytology.Ann. Clin. Res. 13:264–287.

  11. 11.

    BoYum, A. 1968. Separation of leukocytes from blood and bone marrow.Scand. J. Clin. Lab. Invest. 21(Suppl. 97):77–89.

  12. 12.

    Sachs, L. 1984. Angewandte Statistik, 6th ed. Springer, Berlin.

  13. 13.

    Janco, R. L., andD. English. 1983. Cyclosporine and human neutrophil function.Transplantation 35:501–503.

  14. 14.

    Solberg, C. O., T. Kalager, H. R. Hill, andJ. Gleite. 1982. Polymorphonuclear leukoyte function in bacterial and viral infections.Scand. J. Infect. Dis. 14:11–18.

  15. 15.

    Hancock, W. W., N. M. Thompson, andR. C. Atkins. 1983. Composition of interstitial cellular infiltrate identified by monoclonal antibodies in renal biopsies of rejecting human renal allografts.Transplantation 35:458–463.

  16. 16.

    Asher, N. L., R. Hoffmann, S. Chen, andR. L. Simmons. 1980. Specific and nonspecific infiltration of sponge matrix allografts by specifically sensitized cytotoxic lymphocytes.Cell Immunol. 52:38–47.

  17. 17.

    Tannenbaum, J. S., C. B. Anderson, G. A. Sicard, D. W. McKeel, andE. E. Etheredge. 1984, Prostaglandin synthesis associated with renal allografi rejection in the dog.Transplantation 37:438–443.

  18. 18.

    Metzger, Z., J. T. Hoffeld, andJ. J. Opperheim. 1981. Regulation by PGE2 of the production of oxygen intermediates by LPS-activated macrophages.J. Immunol. 127:1109–1113.

  19. 19.

    Sedgwick, J. B., M. L. Berube, andR. B. Zurier. 1985. Stimulus-dependent inhibition of Superoxide generation by prostaglandins.Clin. Immunol. Immunopathol. 34:205–215.

  20. 20.

    Griffin, J. D., S. C. Meuer, S. F. Schlossman, andE. L. Reinherz. 1984. T-cell regulation of myelopoiesis: Analysis at a clonal level.J. Immunol. 133:1863–1868.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schödel, F., Krombach, F., Hammer, C. et al. Peripheral blood and intrarenal phagocytic chemiluminescence during acute kidney graft rejection. Inflammation 10, 271–280 (1986). https://doi.org/10.1007/BF00916122

Download citation

Keywords

  • Mononuclear Cell
  • Kidney Transplantation
  • Functional Capacity
  • Cell Property
  • Allograft Rejection