Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Intensely radiating, supercritical shock waves

  • 27 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    Ya. B. Zel'dovich and Yu. P. Raizer, “High-amplitude shock waves in gases,” Usp. Fiz. Nauk,63, No. 3 (1957).

  2. 2.

    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1967).

  3. 3.

    M. A. Tsikulin and E. G. Popov, Radiative Properties of Shock Waves in Gases [in Russian], Nauka, Moscow (1977).

  4. 4.

    E. G. Bogoyavlenskaya, I. V. Nemchinov, and V. V. Shuvalov, “Radiation of strong shock waves in helium at standard density,” Zh. Prikl. Spektrosk.,34, No. 1 (1981).

  5. 5.

    E. G. Bogoyavlenskaya, I. V. Nemchinov, and V. V. Shuvalov, “Radiation of strong shock waves in neon at standard density,” Zh. Prikl. Spektrosk.,36, No. 4 (1982).

  6. 6.

    Yu. N. Kiselev, “Total radiation yield from strong shock wave fronts in inert gases,” in: Combustion and Explosion in Space and on Earth [in Russian], Izd. Vses. Astron.-Geod. Obshch., Moscow (1980).

  7. 7.

    Yu. N. Kiselev, “Emission of strong shock waves in inert gases in a wide spectral range,” in: Proceedings of the Fourth All-Union Conference on Dynamics of a Radiating Gas [in Russian], Vol. 1, Mosk. Gos. Univ., Moscow (1981).

  8. 8.

    Yu. N. Kiselev, “Radiative properties of a strong shock wave in neon,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1983).

  9. 9.

    M. A. El'yashevich, F. N. Borovik, S. I. Kas'kova, et al., “Thermodynamic functions and absorption coefficients of a bismuth-xenon plasma at temperatures of up to 30 eV,” in: Proceedings of the Fourth All-Union Conference on Dynamics of a Radiating Gas [in Russian], Vol.1, Mosk. Gos. Univ., Moscow (1981).

  10. 10.

    V. I. Bergel'son and I. V. Nemchinov, “On the radiation generated by the impact of a gas layer against an obstacle at a very high velocity,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1978).

  11. 11.

    I. V. Nemchinov and V. V. Shuvalov, “Emission of strong shock waves emerging at a boundary with a vacuum,” Dokl. Akad. Nauk SSSR,253, No. 4 (1980).

  12. 12.

    I. V. Nemchinov, I. A. Trubetskaya, and V. V. Shuvalov, “A spherical explosion with intense emission in a confined gas cloud,” Dokl. Akad. Nauk SSSR,276, No. 4 (1984).

  13. 13.

    T. Yabe and T. Mochizuki, “Impact radiative fusion concept,” Jpn. J. Appl. Phys.,22, No. 4 (1983).

  14. 14.

    A. E. Voitenko, “Obtaining high-velocity gas jets,” Dokl. Akad. Nauk SSSR,158, No. 6 (1964).

  15. 15.

    Yu. N. Kiselev, K. L. Samonin, and B. D. Khristoforov, “Parameters of the jet of an explosive gas compressor,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3 (1981).

  16. 16.

    A. S. Kamrukov, N. P. Kozlov, and Yu. S. Protasov, “An investigation of processes of impact deceleration of hypersonic streams of dense plasma,” Teplofiz. Vys. Temp.,16, No. 6 (1978).

  17. 17.

    Yu. V. Afanas'ev, N. G. Basov, O. N. Krokhin, et al., “Interaction of powerful laser radiation with a plasma,” Itogi Nauki Tekh.,17 (1978).

  18. 18.

    S. P. Obenshain, R. R. Whitlock, E. M. McLean, et al., “Uniform ablative acceleration of targets by laser irradiation at 1014 W/cm2,” Phys. Rev. Lett.,50, No. 1 (1983).

  19. 19.

    M. B. Bavykin, “Electronic thermonuclear fusion,” Itogi Nauki Tekh., Fiz. Plazmy,2, Part 2 (1981).

  20. 20.

    Yu. D. Bakulin and L. V. Luchinskii, “Estimates of the possibility of obtaining high energy-flux densities in the electrical explosion of cylindrical shells,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1980).

  21. 21.

    B. M. Manzon, “Acceleration of macroscopic particles for controlled thermonuclear fusion,” Usp. Fiz. Nauk,134, No. 4 (1981).

  22. 22.

    F. Winterberg, “Black-body radiation imploded inside a small cavity as an inertial confinement fusion driver,” Z. Phys. A, Atoms Nuclei,296, No. 1 (1980).

  23. 23.

    T. Mochizuki, S. Sakabe, and C. Yamanaka, “X-ray geometrical smoothing effect in indirect x-ray-drive implosion,” Jpn. J. Appl. Phys.,22, No. 2 (1983).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 112–119, March–April, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nemchinov, I.V., Trubetskaya, I.A. & Shuvalov, V.V. Intensely radiating, supercritical shock waves. J Appl Mech Tech Phys 27, 260–266 (1986). https://doi.org/10.1007/BF00914738

Download citation

Keywords

  • Mathematical Modeling
  • Shock Wave
  • Mechanical Engineer
  • Industrial Mathematic
  • Supercritical Shock