Advertisement

Flat supersonic underexpanded jets using a laser schlieren method

  • V. A. Kochnev
  • I. M. Naboko
Article

Keywords

Mathematical Modeling Mechanical Engineer Industrial Mathematic Schlieren Method Laser Schlieren 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. W. Lutz and J. H. Kiefer, “Structure of the vibrational relaxation zone of shock waves in oxygen,” Phys. Fluids,9, 1638 (1966).Google Scholar
  2. 2.
    W. J. Sheerren and D. S. Dosanjh, “Observation of jet flows from a two-dimensional, underexpanded, sonic nozzle,” AIAA J.,16, No. 3 (1968).Google Scholar
  3. 3.
    M. J. Werle, D. G. Shaffer, and R. T. Driftmyer, “Free-jet terminal shocks,” AIAA J.,8, No. 12 (1970).Google Scholar
  4. 4.
    R. T. Driftmyer, “A correlation of free-jet data,” AIAA J.,10, No. 8 (1972).Google Scholar
  5. 5.
    R. Sinha and V. Zakkay, “Flow-field analysis of two-dimension underexpanded jets by a time-dependent method,” AIAA J.,9, No. 12 (1972).Google Scholar
  6. 6.
    G. Dupeyrat and J.-F. Devillers, “Jets libres plans en atmosphere rarefied,” C. R. Acad. Sci. Paris, Ser. Pt. 101, No. 287 (1978).Google Scholar
  7. 7.
    J. C. Lengrand, J. Allegre, and M. Raffin, “Experimental investigation of underexpanded exhaust plumes,” AIAA J.,14, No. 5 (1976).Google Scholar
  8. 8.
    W. W. Koziak, “Quantitative laser schlieren measurements in an expanding hypersonic laminar boundary layer,” UTIAS Report, No. 173 (1971).Google Scholar
  9. 9.
    I. S. Zaslonko, S. M. Kogarko, et al., “Investigation of kinetics of liberation of energy in exothermal reactions behind shock waves by laser schlieren method,” Fiz. Goreniya Vzryva, No. 5 (1974).Google Scholar
  10. 10.
    G. I. Maikapara (ed.), Nonequilibrium Physicochemical Processes in Aerodynamics [in Russian], Mashinostroenie, Moscow (1972).Google Scholar
  11. 11.
    R. A. Greenberg, A. M. Schneiderman, et al., “Rapid expansion nozzles for gasdynamic lasers,” AIAA J.,10, No. 11 (1972).Google Scholar
  12. 12.
    P. A. Skovorodko, “Vibrational relaxation in a free jet of carbon dioxide gas,” in: Some Problems in Hydrodynamics and Heat Transfer [in Russian], Izd. ITF Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1976).Google Scholar
  13. 13.
    H. O. Amman, “Starting process in reflection nozzle,” Phys. Fluids,12, No. 5, Pt. II (1969).Google Scholar
  14. 14.
    G. Shlichting, Boundary Layer Theory, McGraw-Hill (1966).Google Scholar
  15. 15.
    M. E. Deich, Engineering Gas Dynamics [in Russian], énergiya, Moscow (1974).Google Scholar
  16. 16.
    R. Kawamura and W. Masuda, “A numerical study on the effects of viscosity on the performance of CO2 gasdynamic laser,” ISAS Rep. No. 528 (1975).Google Scholar
  17. 17.
    N. Mitra and M. Fiebig, “Viscous nozzle flows and CO2 gasdynamics lasers,” in; 1st GCL Int. Sympos., Cologne (1976).Google Scholar
  18. 18.
    G. A. Simons, “The effect of boundary layers on GDL-medium homogeneity,” AIAA Paper, No. 72–709 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • V. A. Kochnev
    • 1
  • I. M. Naboko
    • 1
  1. 1.Moscow

Personalised recommendations