Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Involvement of bivalent cations and arachidonic acid in neutrophil aggregation

  • 17 Accesses

  • 11 Citations


Chemotactic factors and arachidonic acid aggregate neutrophils; indomethacin and 5,8,11,14-eicosatetraynoic acid, two blockers of cellular arachidonate metabolism, inhibit these responses. Additionally, A23187, an ionophore which specifically transports bivalent cations into cells, also aggregates the neutrophils, and this response, as well as the response to chemotactic factors, requires the presence of extracellular calcium and magnesium. In this report these relationships were further studied. It was found that human neutrophil aggregation stimulated by arachidonic acid also required calcium and magnesium. Furthermore, cells preincubated with arachidonate for 4 min before exposure to the bivalent cations did not aggregate before or after this exposure and, following this exposure, were refractory to subsequent stimulation by more arachidonate, a chemotactic tripeptide (formylmethionylleucylphenylalanine), or A23187, i.e., these cells had become nonselectively desensitized to the aggregating agents. Finally, indomethacin and 5,8,11,14-eicoasatetraynoic acid inhibited the aggregation response stimulated by A23187 and their potency in doing so paralleled their potency in inhibiting the responses induced by arachidonate or the chemotactic tripeptide. Thus, the neutrophil aggregation responses induced by arachidonate, chemotactic factor, and A23187 were similarly influenced by preincubating the cells with arachidonate, had similar requirements for calcium and magnesium, and were similarly inhibited by blockers of arachidonate metabolism. It appears that bivalent cations and arachidonic acid play essential and, perhaps, interacting roles in the aggregation response to diverse stimuli.

This is a preview of subscription content, log in to check access.


  1. 1.

    Mason, R. J., T. P. Stossel, andM. Vaughan. 1972. Lipids of alveolar macrophages, polymorphonuclear leukocytes, and their phagocytic vesicles.J. Clin. Invest. 51:2399–2407.

  2. 2.

    Smolen, J. E., andS. B. Shohet. 1974. Remodeling of granulocyte membrane fatty acids during phagocytosis.J. Clin. Invest. 53:726–734.

  3. 3.

    Hirata, F., B. A. Corcoran, K. Venkatasubramanian, E. Schiffmann, andJ. Axelrod. 1979. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes.Proc. Natl. Acad. Sci. USA76:2640–2643.

  4. 4.

    Zurier, R. B., andD. M. Sayadoff. 1975. Release of prostaglandins from human polymorphonuclear leukocytes.Inflammation 1:93–101.

  5. 5.

    Higgs, G. A., S. Bunting, S. Moncada, andJ. R. Vane. 1976. Polymorphonuclear leukocytes produce thromboxane A2 like activity during phagocytosis.Prostaglandins 12:749–757.

  6. 6.

    Goldstein, I. M., C. L. Malmsten, H. Kindahl, H. B. Kaplan, O. Radmark, B. Samuelsson, andG. Weissmann. 1978. Thromboxane generation by human peripheral blood polymorphonuclear leukocytes.J. Exp. Med. 148:787–792.

  7. 7.

    Kaley, G., andR. Weiner. 1971. Effect of prostaglandin E1 on leukocyte migration.Nature New Biol. 234:114–115.

  8. 8.

    Higgs, G. A., E. McCall, andL. J. F. Youlten. 1975. A chemotactic role for prostaglandins released from polymorphonuclear leukocytes during phagocytosis.Br. J. Pharmacol. 53:539–546.

  9. 9.

    Borgeat, P., M. Hamberg, andB. Samuelsson. 1976. Transformation of arachidonic acid and homo-γ-linolenic acid by rabbit polymorphonuclear leukocytes. Monohydroxy acids from novel lipoxygenases.J. Biol. Chem. 24:7816–7820.

  10. 10.

    Borgeat, P., andB. Samuelsson. 1979. Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid.J. Biol. Chem. 254:2643–2646.

  11. 11.

    Kitchen, E. A., J. R. Boot, andW. Dawson. 1978. Chemotactic activity of thromboxane B2, prostaglandins and their metabolites for polymorphonuclear leukocytes,Prostaglandins 16:239–244.

  12. 12.

    Goetzl, E. J., F. H. Valone, V. N. Reinhold, andR. R. Gorman. 1979. Specific inhibition of the polymorphonuclear leukocyte chemotactic response to hydroxy-fatty acid metabolites of arachidonic acid by methyl ester derivatives.J. Clin. Invest. 63:1181–1186.

  13. 13.

    Lynn, W. S., andC. Mukherjee. 1978. Motility of human polymorphonuclear leukocytes. Roles of hydroxy fatty acids, other lipids, and cations.Am. J. Pathol. 91:581–593.

  14. 14.

    Nacache, P. H., J. H. Showell, E. L. Becker, andR. I. Sha'afi. 1979. Arachidonic acid induced degranulation of rabbit peritoneal neutrophils.Biochem. Biophys. Res. Commun. 87:292–299.

  15. 15.

    O'Flaherty, J. T., H. T. Showell, E. L. Becker, andP. A. Ward. 1979. Arachidonic acid aggregates neutrophils.Inflammation 3:431–436.

  16. 16.

    O'Flaherty, J. T., H. T. Showell, E. L. Becker, andP. A. Ward. 1979. Neutrophil aggregation and degranulation. Effect of arachidonic acid.Am. J. Pathol. 95:435–444.

  17. 17.

    O'Flaherty, J. T., H. T.Showell, E. L.Becker, and P. A.Ward. (1979). Role of arachidonic acid derivatives in neutrophil aggregation: A hypothesis.Prostaglandins (in press).

  18. 18.

    O'flaherty, J. T., H. T. Showell, P. A. Ward, andE. L. Becker. 1979. Possible role of arachidonic acid in human neutrophil aggregation and degranulation.Am. J. Pathol. 96:799–809.

  19. 19.

    Wentzell, B., andR. M. Epand. 1978. Stimulation of the release of prostaglandins from polymorphonuclear leukocytes by the calcium ionophore A23187FEBS Lett. 86:255–258.

  20. 20.

    Borgeat, P., andB. Samuelsson. 1979. Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A23187.Proc. Natl. Acad. Sci. USA76:2148–2152.

  21. 21.

    Smith, R. J., andL. J. Ignarro. 1975. Bioregulation of lysosomal enzyme secretion from human neutrophils: Roles of guanosine 3':5'-monophosphate and calcium in stimulussecretion coupling.Proc. Natl. Acad. Sci. USA72:108–112.

  22. 22.

    Naccache, P. H., H. T. Showell, E. L. Becker, andR. I. Sha'afi. 1977. Changes in ionic movements across rabbit polymorphonuclear leukocyte membranes during lysosomal enzyme release. Possible ionic basis for lysosomal enzyme release.J. Cell. Biol 75: 635–649.

  23. 23.

    Zabucchi, G., M. R. Soranzo, F. Rossi, andD. Romeo. 1975. Exocytosis in human polymorphonuclear leukocytes induced by A23187 and calcium.FEBS Lett. 54:44–48.

  24. 24.

    O'Flaherty, J. T., H. T. Showell, E. L. Becker, andP. A. Ward. 1978. Substances which aggregate neutrophils: Mechanism of action.Am. J. Pathol. 92:155–166.

  25. 25.

    O'Flaherty, J. T., D. L. Kreutzer, andP. A. Ward. 1979. Effect of cytochalasin B on human neutrophil aggregation.Exp. Cell. Res. 120:31–37.

  26. 26.

    O'Flaherty, J. T., D. L. Kreutzer, H. T. Showell, E. L. Becker, andP. A. Ward. 1978. Desensitization of the neutrophil aggregation response to chemotactic factors.Am. J. Pathol. 93:693–705.

  27. 27.

    O'Flaherty, J. T., P. L. Kreutzer, H. T. Showell, G. Vitbauskas, E. L. Becker, andP. A. Ward. 1979. Selective neutrophil desensitization to chemotactic factors.J. Cell. Biol. 80:564–572.

  28. 28.

    Willis, A. L., D. C. Kuhn, andH. J. Weiss. 1974. Acetylenic analog of arachidonate that acts like aspirin on platelets.Science 183:127–129.

  29. 29.

    Willis, A. L. 1974. An enzymatic mechanism for the antithrombotic and antihemostatic actions of aspirin.Science 183:325–327.

  30. 30.

    Flowers, R. J. 1974. Drugs which inhibit prostaglandin biosynthesis.Pharmacol. Rev. 26:33–67.

  31. 31.

    Egan, R. W., J. Paxton, andF. A. Keuhl. 1976. Mechanism of irreversible self-deactivation of prostaglandin synthetase.J. Biol. Chem. 23:7329–7335.

  32. 32.

    Needleman, P., M. Monkes, andA. Raz. 1976. Thromboxanes: Selective biosynthesis and distinct properties.Science 193:163–165.

  33. 33.

    O'Flaherty, J. T., D. L. Kreutzer, andP. A. Ward. 1979. Effect of prostaglandins E1, E2 and F2a on neutrophil aggregation.Prostaglandins 17:201–210.

  34. 34.

    Samuelsson, B., G. Folco, E. Granstrom, H. Kundahl, andC. Malmsten. 1978. Prostaglandins and thromboxanes: Biochemical and physiologycal considerations.Adv. Prostaglandin Thromboxane Res. 4:1–25.

  35. 35.

    Oelz, O., H. R. Knapp, L. J. Roberts, R. Oelz, B. J. Sweetman, J. A. Oates, andP. W. Reed. 1978. Calcium-dependent stimulation of thromboxane and prostaglandin biosynthesis by ionophores.Adv. Prostaglandin Thromboxane Res. 3:147–158.

  36. 36.

    Massini, P., R. Käser-Glanzmann, andE. F. Luscher. 1978. Movement of calcum ions and their role in the activation of platelets.Thrombos. Haemostas (Stuttgart) 40:212–218.

  37. 37.

    Kantor, H. S., andH. S. Hampton. 1978. Indomethacin in submicromolar concentrations inhibits cyclic AMP-dependent protein kinase.Nature 276:841–842.

  38. 38.

    Kaplan, L., J. Weiss, andP. Elsbach. 1978. Low concentrations of indomethacin inhibit phospholipase A2 of rabbit polymorphonuclear leukocytes,proc. Natl. Acad. Sci. USA75:2955–2958.

Download references

Author information

Additional information

Publication 1877 of the Research Institute of Scripps Clinic, La Jolla, California 92037.

Supported by research grants: A1 07007 (NIH); Office of Naval Research; Council for Tobacco Research.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

O'Flaherty, J.T. Involvement of bivalent cations and arachidonic acid in neutrophil aggregation. Inflammation 4, 181–194 (1980). https://doi.org/10.1007/BF00914164

Download citation


  • Calcium
  • Magnesium
  • Internal Medicine
  • Arachidonic Acid
  • Indomethacin