Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Investigation of the cleavage fracture of condensed solids

  • 23 Accesses

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    H. Kolsky, “Fracture under the effect of stress waves,” in: Atomic Fracture Mechanism [Russian translation], Metallurgizdat, Moscow (1963).

  2. 2.

    A. N. Dremin, G. I. Kanel', and S. A. Koldunov, “Investigation of cleavage in water, ethyl alcohol, and Plexiglas,” in: Combustion and Explosion (Materials of the Third All-Union Symposium on Combustion and Explosion) [in Russian], Nauka, Moscow (1972).

  3. 3.

    D. C. Erlich, D. C. Wooten, and R. C. Crewdson, “Dynamic tensile fracture of glycerol,” J. Appl. Phys.,42, No. 13 (1971).

  4. 4.

    G. A. Carlson and H. S. Levin, “Dynamic tensile strength of glycerol,” J. Appl. Phys.,46, No. 4 (1975).

  5. 5.

    G. A. Carlson, “Dynamic tensile strength of mercury,” J. Appl. Phys.,46, No. 9 (1975).

  6. 6.

    A. P. Rybakov, “Investigation of cleavage phenomena in condensed bodies under loading by oblique shocks,” in: Detonation. Critical Phenomena. Physicochemical Transformation in Shocks [in Russian], Chernogolovka (1978).

  7. 7.

    S. A. Dorodylin, A. I. Brichikov, et al., “X-Ray diffraction investigation of the process of the dispersion of easily melted metals during shock emergence on their free surface,” Fiz. Tverd. Tela,18, No. 9 (1976).

  8. 8.

    R. R. Breed, C. L. Mader, and D. Venable, “Technique for determination of dynamic tensile strength characteristics,” J. Appl. Phys.,38, No. 8 (1967).

  9. 9.

    F. F. Vitman, M. I. Ivanov, and B. S. Ioffe, “Resistance of plastic metals to fracture under a pulse loading,” Fiz. Metal. Metallov.,18, No. 5 (1964).

  10. 10.

    M. Kornfeld, Elasticity and Strength of Fluids [Russian translation], Gostekhizdat, Moscow-Leningrad (1951).

  11. 11.

    A. T. J. Hayward, “Negative pressure in liquids: can it be harnessed to serve man?” Am. Scientist,59, 434 (1971).

  12. 12.

    M. I. Garbar, M. S. Akutin, and N. M. Egorov (eds.), Handbook on Plastics [in Russian], Khimiya, Moscow (1967).

  13. 13.

    A P. Rybakov and V. P. Muzychenko, “Mechanics of cleavage fracture under shock loading,” in: Reports to the Third All-Union Symposium on Pulsed Pressures [in Russian], Moscow (1979).

  14. 14.

    Yu. I. Fadeenko, “Time fracture criteria in solid dynamics,” in: Dynamic Problems in the Mechanics of Continuous Media [in Russian], No. 32, Izd. Inst. Gidrodinamiki, Novosibirsk (1977).

  15. 15.

    L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow (1953).

  16. 16.

    D. E. Grady and R. E. Hollenbarch, “Rate-controlling processes in the brittle failure of rock,” SAND-760659, Sandia Lab., Albuquerque, N. M. (1977). Cited in V. N. Nikiforovskii, L. D. Lifshits, and I. A. Sizov, “Mechanical properties of rock. Deformation and fracture,” in: Mechanics of a Deformable Solid [in Russian], Vol. 11, VINITI, Moscow (1978), p. 123.

  17. 17.

    N. A. Zlatin, G. S. Pugachev, et al., “Time dependence of the strength of materials under microsecond range endurances,” Fiz. Tverd. Tela,17, No. 9 (1975).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp, 144–146, September–October. 1981.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rybakov, A.P. Investigation of the cleavage fracture of condensed solids. J Appl Mech Tech Phys 22, 715–717 (1981).

Download citation


  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Cleavage Fracture
  • Condensed Solid