Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structure of weak shock waves in relaxing media

This is a preview of subscription content, log in to check access.


  1. 1.

    Ya. B. Zel'dovich, “Shock wave propagation in a gas with reversible chemical reactions,” ZhÉTF, vol. 16, no. 4, 1946.

  2. 2.

    Ya. B. Zel'dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow, 1966.

  3. 3.

    P. E. Stepanov, “Relaxation phenomena in a shock wave in gas,” ZhÉTF, vol. 17, no. 5, 1947.

  4. 4.

    S. P. D'yakov, “Shock waves in a relaxing medium,” ZhETF, vol. 27, no. 6(12), 1954.

  5. 5.

    L. I. Mandel'shtam and M. A. Leontovich, “On the theory of sound absorption in fluids,” ZhETF, vol. 7, no. 3, 1937.

  6. 6.

    L. D. Landau and E. M. Lifshitz, Mechanics of Continuous Media [in Russian], Gostekhteoretizdat, Moscow, 1953.

  7. 7.

    H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids [Russian translation], Gostekhizdat, Moscow-Leningrad, 1947.

  8. 8.

    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow, 1953.

  9. 9.

    M. A. Isakovich, “Sound propagation in emulsions,” ZhÉTF, vol. 18, no. 10, 1948.

  10. 10.

    L. D. Landau and E. M. Lifshitz, Theoretical Physics, vol. 5: Statistical Physics [in Russian], Nauka, Moscow, 1964.

  11. 11.

    G. W. C. Kaye and T. H. Laby, Physics Handbook for the Experimenter [Russian translation], Izd-vo inostr. lit., Moscow, 1949.

  12. 12.

    S. P. D'yakov, “Shock waves in binary mixtures,” ZhÉTF, vol. 27, no. 3(9), 1954.

Download references

Author information

Additional information

The author wishes to thank Ya. B. Zel'dovich, A. S. Kompaneits, N. M. Kuznetsov, and V. A. Belokon for valuable suggestions and their interest in this study.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arutyunyan, G.M. Structure of weak shock waves in relaxing media. J Appl Mech Tech Phys 10, 282–288 (1969).

Download citation


  • Mathematical Modeling
  • Shock Wave
  • Mechanical Engineer
  • Industrial Mathematic
  • Weak Shock