Monatshefte für Chemie - Chemical Monthly

, Volume 105, Issue 4, pp 787–795 | Cite as

Massenspektrometrische Untersuchung des Substituenteneffektes bei einfach substituierten Benzophenonen

  • R. Heller
  • K. Varmuza
  • P. Krenmayr
Organische Chemie und Biochemie

Mass spectrometric studies of the substituent effect on monosubstituted benzophenones


Ionization potentials of benzophenone and six meta- and parasubstituted benzophenones have been measured and correlated withBrownσ+-constants. The ρ-value of this correlation gives evidence that the ionization process of benzophenones is similar to the ionization process of compounds with one benzene ring: removal of an electron from the π-electron system.

Appearance potentials of the benzoyl ions and the corresponding six substituted benzoyl ions have been determined and correlated withHammett σ-constants. The deviations of ions with the substituents m-NH2 and p-NH2 from the correlation line are mainly due to the kinetic shift of these ions.

For the decomposition of benzophenone ions to benzoyl ions the correlation of metastable-ion intensities withHammett σ-constants shows a similar ρ-value as the correlation of the intensities of the decomposition in the ion source.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. P. Hammett, Physical Organic Chemistry, Chap. VII. New York: McGraw-Hill. 1940.Google Scholar
  2. 2.
    H. C. Brown undY. Okamoto, J. Amer. Chem. Soc.80, 4979 (1958).CrossRefGoogle Scholar
  3. 3.
    A. G. Harrison, P. Kebarle undF. P. Lossing, J. Amer. Chem. Soc.83, 777 (1961).CrossRefGoogle Scholar
  4. 4.
    G. F. Crable undG. Kearns, J. Phys. Chem.66, 436 (1962).CrossRefGoogle Scholar
  5. 5.
    J. Tait, T. W. Shannon undA. G. Harrison, J. Amer. Chem. Soc.84, 4 (1962).CrossRefGoogle Scholar
  6. 6.
    A. Foffani undS. Pignataro, Z. physik. Chem.42, 221 (1964).CrossRefGoogle Scholar
  7. 7.
    S. Pignataro, A. Foffani, G. Innorta undG. Distefano, Z. physik. Chem.49, 291 (1966).CrossRefGoogle Scholar
  8. 8.
    F. Benoit, Org. Mass Spectrom.6, 1289 (1972).CrossRefGoogle Scholar
  9. 9.
    M. R. Basila undD. J. Clancy, J. Phys. Chem.67, 1551 (1963).CrossRefGoogle Scholar
  10. 10.
    A. Buchs, G. P. Rosetti undB. P. Susz, Helv. chim. Act.47, 1563 (1964).CrossRefGoogle Scholar
  11. 11.
    M. S. Chin undA. G. Harrison, Org. Mass Spectrom.2, 1073 (1969).CrossRefGoogle Scholar
  12. 12.
    M. M. Bursey undF. W. McLafferty, J. Amer. Chem. Soc.88, 529, 4484 (1966);89, 1 (1967).CrossRefGoogle Scholar
  13. 13a).
    N. Einolf undB. Munson, Org. Mass Spectrom.5, 397 (1971),7, 155 (1973);CrossRefGoogle Scholar
  14. 13b).
    K. K. Lum undG. G. Smith, J. Org. Chem.34, 2095 (1969).CrossRefGoogle Scholar
  15. 14.
    J. W. Warren, Nature165, 810 (1950).CrossRefGoogle Scholar
  16. 15.
    G. D. Flesch undH. J. Svec, Int. J. Mass Spectrom. and Ion Physics9, 106 (1972).CrossRefGoogle Scholar
  17. 16.
    K. R. Jennings, in: Some newer physical methods in structural Chemistry. (R. Bonnett undJ. G. Davis, Hrsg.), S. 105, Proceedings Sympos. Oxford 1966. London: United Trade Press Ltd. 1967.Google Scholar
  18. 17.
    K. J. Laidler, Reaktionskinetik. Mannheim-Wien-Zürich: Hochschultaschenbücherverlag. 1970.Google Scholar
  19. 18.
    R. Heller, P. Krenmayr undK. Varmuza, unveröffentlicht (1973).Google Scholar
  20. 19.
    M. L. Gross undF. W. McLafferty, Chem. Commun.1968, 254.Google Scholar
  21. 20.
    K. Varmuza undP. Krenmayr, Mh. Chem.102, 1037 (1972).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • R. Heller
    • 1
  • K. Varmuza
    • 1
  • P. Krenmayr
    • 1
  1. 1.Institut für Allgemeine Chemie der Technischen Hochschule WienWienÖsterreich

Personalised recommendations