Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 105, Issue 4, pp 689–711 | Cite as

Thermodynamic properties of cobalt-selenium alloys

  • H. Jelinek
  • K. L. Komarek
Anorganische, Struktur- und Physikalische Chemie

Abstract

Vapor pressures of selenium in cobalt-selenium alloys were determined by an isopiestic method between 600 and 1000 °C and between 52 and 66.6 at % Se. Activities of selenium were evaluated according to three methods taking into account the complexity of the selenium vapor. For the nonstoichiometric Co1−xSe phase with NiAs-type structure a statistical model was applied. Activities and partial molar enthalpies of selenium derived by assuming random distribution of cobalt atoms and cobalt vacancies in the 001/2-layers of the NiAs-lattice are in very good agreement with the experimental values. The interaction energy between cobalt vacancies was found to be 7780 cal/g-atom.

Keywords

Physical Chemistry Analytical Chemistry Enthalpy Cobalt Inorganic Chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ettenberg, K. L. Komarek, andE. Miller, J. Solid State Chem.1, 583 (1970).CrossRefGoogle Scholar
  2. 2.
    R. M. Geffken, K. L. Komarek, andE. Miller, J. Solid State Chem.4, 153 (1972).CrossRefGoogle Scholar
  3. 3.
    M. Hansen andK. Anderko, Constitution of Binary Alloys, 2. Aufl. New York: McGraw-Hill. 1958.Google Scholar
  4. 4.
    R. P. Elliott, Constitution of Binary Alloys, First Supplement. New York: McGraw-Hill. 1965.Google Scholar
  5. 5.
    F. S. Shunk, Constitution of Binary Alloys, Second Supplement. New York: McGraw-Hill. 1969.Google Scholar
  6. 6.
    U. Hashimoto, Nippon Kinzoku Gakkai-Shi2, 67 (1938); Chem. Abstr.32, 7381 (1938).Google Scholar
  7. 7.
    L. D. Dudkin andV. I. Vaidanich, Fiz. Tverd. Tela2, 1526 (1960).Google Scholar
  8. 8.
    I. Oftedal, Z. physik. Chem.128, 137 (1927).Google Scholar
  9. 9.
    W. F. DeJong andH. W. V. Willems, Physica7, 74 (1927).Google Scholar
  10. 10.
    W. F. DeJong andH. W. V. Willems, Z. anorg. allgem. Chem.170, 241 (1928).CrossRefGoogle Scholar
  11. 11.
    S. Tengnér, Z. anorg. allgem. Chem.239, 126 (1938).CrossRefGoogle Scholar
  12. 12.
    B. Lewis andN. Elliott, J. Amer. Chem. Soc.62, 3180 (1940).CrossRefGoogle Scholar
  13. 13.
    F. Bøhm, F. Grønvold, H. Haraldsen, andH. Prydz, Acta Chem. Scand.9, 1510 (1955).CrossRefGoogle Scholar
  14. 14.
    M. Laffitte andO. Cerclier, High Temp.-High Press.1, 449 (1969).Google Scholar
  15. 15.
    O. Cerclier, Thèse, Univ. de Provence, France (1971).Google Scholar
  16. 16.
    K. Igaki andY. Noda, Nippon Kinzoku Gakkaishi33, 371 (1969); Chem. Abstr.70, 109812 n (1969).Google Scholar
  17. 17.
    Y. Noda andK. Igaki, Ibid.35, 1031 (1971); Chem. Abstr.76, 28248 e (1972).Google Scholar
  18. 18.
    K. L. Komarek andK. Wessely, Mh. Chem.103, 896 (1972).Google Scholar
  19. 19.
    A. L. N. Stevels, Philips Res. Rep. Suppl. Nr.9 (1969).Google Scholar
  20. 20.
    L. Cambi, M. Elli, andE. Giudici, La Chim. e L'Ind.51, 795 (1969).Google Scholar
  21. 21.
    C. Fabre, Ann. chim. phys.10, 472 (1887).Google Scholar
  22. 22.
    M. Kh. Karapet'yants, Trudy M. Kh. T. I. im. D. I. Mendeleeva20, 10 (1955).Google Scholar
  23. 23.
    N. G. Eror andJ. B. Wagner, Jr., Acta Met.11, 1339 (1963).CrossRefGoogle Scholar
  24. 24.
    O. B. Matlasevich, V. A. Geiderikh, andYa. I. Gerassimov, Rev. Chim. minér.9, 191 (1972).Google Scholar
  25. 25.
    O. B. Matlasevich andV. A. Geiderikh, J. Fiz. Khim.46, 1829 (1972).Google Scholar
  26. 26.
    I. Y. Feenberg andS. E. Vaisburd, J. Fiz. Khim.46, 1575 (1972).Google Scholar
  27. 27.
    K. Mills, National Physical Laboratory, Teddington, England, private comm.Google Scholar
  28. 28.
    K. L. Komarek andG. Stummerer, Mh. Chem.102, 1360 (1971).Google Scholar
  29. 29.
    W. F. Roeser andS. Lonberger, Natl. Bur. Std. (U.S.), Circ. No. 590 (1956).Google Scholar
  30. 30.
    H. Keller, H. Rickert, D. Detry, J. Drowart, andP. Goldfinger, Z. physik. Chem. [NF]75, 273 (1971).CrossRefGoogle Scholar
  31. 31.
    H. Rau, Ber. Bunsenges. Physik. Chem.71,711 (1967).Google Scholar
  32. 32.
    E. H. Baker, J. Chem. Soc.A 1968, 1089.Google Scholar
  33. 33.
    R. F. Brebrick, J. Phys. Chem.43, 3031 (1965).CrossRefGoogle Scholar
  34. 34.
    L. S. Brooks, J. Amer. Chem. Soc.74, 227 (1952).CrossRefGoogle Scholar
  35. 35.
    R. Gee andR. A. J. Shelton, Trans. Inst. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.)80, C 192 (1971).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. Jelinek
    • 1
  • K. L. Komarek
    • 1
  1. 1.Institute of Inorganic ChemistryUniversity of ViennaViennaAustria

Personalised recommendations