Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetic characteristics of spall fracture

  • 51 Accesses

  • 1 Citations

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    J. H. Smith, “Three low-pressure spall thresholds in copper,” in: Dynamic Behavior of Materials, ASTM, Philadelphia (1963).

  2. 2.

    D. W. Blinkow and D. V. Keller, “Experiments on the mechanism of spall,” in: Dynamic Behavior of Materials, ASTM, Philadelphia (1963).

  3. 3.

    G. T. Khan, B. L. Averbach, W. S. Owen, and M. Cohen, “Origin of chip microcracks in polycrystalline iron and steel,” in: Atomic Mechanism of Fracture [in Russian], Metallurgizdat, Moscow (1963).

  4. 4.

    Ya. B. Fridman, Mechanical Properties of Metals [in Russian], Pt. 1, 3rd edn., Mashinostroenie (Moscow).

  5. 5.

    T. W. Barbee, L. Seamon, R. Grewdson, and D. Curran, “Dynamic fracture criteria for ductile and brittle metals,” J. Mater.,7, No. 3 (1972).

  6. 6.

    D. R. Curran and D. A. Shockey, “Dynamic fracture criteria for a polycarbonate,” J. Appl. Phys.,44, No. 9 (1973).

  7. 7.

    N. A. Zlatin, G. S. Pugachev, S. M. Mochalov, and A. M. Bratov, “Time dependence of the strength of metals for microsecond band longevities,” Fiz. Tverd. Tela,17, No. 9 (1975).

  8. 8.

    A. G. Ivanov and V. N. Mineev, “On the scaling criterion for brittle fracture of a structure,” Dokl. Akad. Nauk SSSR,220, No. 3 (1975).

  9. 9.

    V. S. Nikiforovskii, “On the kinetic nature of brittle fracture of solids,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1976).

  10. 10.

    Yu. I. Fadeenko, “Time criterion of fracture by explosion,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6 (1977).

  11. 11.

    B. M. Butcher, L. M. Barker, D. E. Munson, and C. D. Lundergan, “Influence of stress history on time-dependence in metals,” AIAA J.,2, No. 6 (1964).

  12. 12.

    F. R. Tuler and B. M. Butcher, “A criterion for the time dependence of dynamic fracture,” Int. J. Fract. Mech.,4, No. 4 (1968).

  13. 13.

    L. J. Cohen and H. M. Berkowitz, “Time-dependence fracture criteria for 6061-T6 aluminum under stress-wave loading in uniaxial strain,” Int. J. Fract. Mech.,7, No. 2 (1971).

  14. 14.

    N. A. Zlatin, S. M. Mochalov, G. S. Pugachev, and A. M. Bragov, “Time regularities of metal fracture under intensive loads,” Fiz. Tverd. Tela,16, No. 6 (1974).

  15. 15.

    B. A. Tarasov, “On the time-dependence of the strength of organic glass under shock loading,” Probl. Prochn., No. 2 (1972).

  16. 16.

    L. D. Volovets, N. A. Zlatin, and G. S. Pugachev, “On the fracture mechanism of solids in microsecond band lifetimes,” Pis'ma Zh. Tekh. Fiz.,4, No. 18 (1978).

  17. 17.

    A. G. Ivanov and S. A. Novikov, “Capacitive transducer method for recording the instantaneous velocity of a moving surface,” Prib. Tekh. Eksp., No. 1 (1963).

  18. 18.

    G. I. Kanel', “Application of manganin transducers to measure the shock compression pressure of condensed media,” [in Russian], VINITI, No. 477-74 dep. (1974).

  19. 19.

    E. P. Mogilevskii, Materials in Machine Construction [in Russian], Vol. 2, Mashinostroenie, Moscow (1967).

  20. 20.

    S. A. Novikov, I. I. Divnov, and A. G. Ivanov, “Investigations of the fracture of steel, aluminum, and copper under explosive loading,” Fiz. Metl. Metalloved.,21, No. 4 (1966).

  21. 21.

    G. V. Stepanov, “Spall fracture of metals by plane elastic-plastic waves,” Probl. Prochn., No. 8 (1976).

  22. 22.

    A. M. Molodets, “Measurement of the spall strength in three steels,” in: Detonation, Critical Phenomena. Physicochemical Transformations in Shocks [in Russian], Chernogolovka (1978).

  23. 23.

    A. G. Ivanov and S. A. Novikov, “On rarefaction shocks in iron and steel,” Zh. Eksp. Teor. Fiz.,40, No. 6 (1961).

  24. 24.

    L. Davison and A. S. Stevens, “Continuum measure of spall damage,” J. Appl. Phys.,43, No. 3 (1972).

  25. 25.

    A. N. Dremin and G. I. Kanel', “Compression and rarefaction waves in shock-compressed metals,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2 (1976).

  26. 26.

    L. D. Volovets, N. A. Zlatin, and G. S. Pugachev, “Origin and development of submicrocracks in polymethylmethacrylate under dynamic tension (spall),” Pis'ma Zh. Tekh. Fiz., 4, No. 18 (1978).

  27. 27.

    A. V. Stepanov, Principles of the Practical Strength of Crystals [in Russian], Nauka, Moscow (1974).

  28. 28.

    L. M. Kachanov, Principles of Fracture Mechanics [in Russian], Nauka, Moscow (1974).

  29. 29.

    S. N. Zhurkov and T. P. Sanfirova, “Relation between strength and creep of metals and alloys,” Zh. Tekh. Fiz.,28, No. 8 (1958).

  30. 30.

    V. R. Regel', A. I. Slutsker, and É. E. Tomashevskii, Kinetic Nature of the Strength of Solids [in Russian], Nauka, Moscow (1974).

  31. 31.

    V. R. Regel', A. I. Slutsker, and É. E. Tomashevskii, “Kinetic nature of the strength of solids,” Usp. Fiz. Nauk.106, No. 2 (1972).

  32. 32.

    B. Ya. Pines and A. F. Sirenko, “On the question of the correlation between the creep rate and longevity under load in metals,” Fiz. Met. Metalloved,10, No. 3 (1960).

  33. 33.

    R. G. McQueen and S. P. Marsh, “Equations of state for nineteen metallic elements from shock wave measurements,” J. Appl. Phys.,31, No. 7 (1960).

  34. 34.

    L. S. Moroz, Yu. D. Khesin, and T. K. Marinets, “Investigation of creep and creep strength of iron at low temperatures,” Fiz. Met. Metalloved.,13, No. 6 (1962).

  35. 35.

    B. M. Rovinskii and L. M. Rybakova, “Time dependence of strength under active loading.” Fiz. Met. Metalloved.,9, No. 4 (1960).

  36. 36.

    A. H. Cottrell, “Theoretical aspects of the fracture process,” in: Atomic Mechanism of Fracture [in Russian], Metallurgizdat, Moscow (1963).

  37. 37.

    J. J. Gilman, “Dislocation dynamics and the response of materials to impact,” Appl. Mech. Rev.,21, No. 8 (1968).

  38. 38.

    A. N. Zelikman, Metallurgy of Rare-Earth Metals Thorium and Uranium [in Russian], Metallurgizdat, Moscow (1970).

  39. 39.

    M. L. Bernshtein and V. A. Zaimovskii, Structure and Mechanical Properties of Metals [in Russian], Metallurgizdat, Moscow (1970).

  40. 40.

    C. S. Specht, P. F. Taylor, and A. A. Wallag, “Observation of spallation and attenuation effects in aluminum and beryllium from free surface velocity measurements,” in: Metallurgical Effects of High Strain Rates, New York-London (1973).

  41. 41.

    S. Cochrane and D. Banner, “Spall studies in uranium,” J. Appl. Phys.,48, No. 7 (1977).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 85–95, November–December 1980.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dremin, A.N., Molodets, A.M. Kinetic characteristics of spall fracture. J Appl Mech Tech Phys 21, 806–813 (1980).

Download citation


  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Kinetic Characteristic
  • Spall Fracture