Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Influence of the shape of the supersonic part of a nozzle on the rate of redistribution of molecules over vibrational levels in the active medium of a CO gasdynamic laser

This is a preview of subscription content, log in to check access.

Literature cited

  1. 1.

    W. S. Watt, “Carbon monoxide gas dynamic laser,” Appl. Phys. Lett.,18, No. 11 (1971).

  2. 2.

    R. L. McKenzil, “Laser power at 5 Μ from the supersonic expansion of carbon monoxide,” Appl. Phys. Lett.,17, No. 10 (1970).

  3. 3.

    V. A. Belavin, G. V. Abrosimov, et al., “Coefficient of amplification of a weak signal in a CO gasdynamic laser,” Zh. Tekh. Fiz.,47, No. 3 (1977).

  4. 4.

    G. A. Andronov, A. G. Armer, et al., “A gasdynamic laser based on a CO-Ar mixture,” Kvantovaya Elektron. (Moscow),4, No. 8 (1977).

  5. 5.

    B. S. Aleksandrov, G. A. Andronov, et al., “Energy characteristics of the working media of CO gasdynamic lasers,” Teplofiz. Vys. Temp.,16, No. 5 (1978).

  6. 6.

    V. F. Gavrikov, A. P. Dronov, et al., “A carbon monoxide gasdynamic laser,” Kvantovaya Elektron. (Moscow),1, No. 1 (1974).

  7. 7.

    V. F. Gavrikov, A. P. Dronov, et al., “An experimental investigation of gasdynamic lasers based on mixtures of CO with inert gases,” Kvantovaya Elektron. (Moscow),2, No. 1 (1975).

  8. 8.

    J. W. Rich, “Kinetic modeling of the high-power carbon monoxide laser,” J. Appl. Phys.,42, No. 7 (1971).

  9. 9.

    K. Nanbu, “Vibrational relaxation of anharmonic oscillation in expansion nozzles,” J. Phys. Soc. Jpn.,40, No. 5 (1976).

  10. 10.

    V. F. Gavrikov, A. P. Dronov, et al., “Vibrational relaxation of carbon monoxide in supersonic nozzles,” Kvantovaya Elektron. (Moscow),3, No. 7 (1976).

  11. 11.

    N. Ya. Vasilik, V. A. Vakhnenko, et al., “Energy characteristics of a carbon monoxide gasdynamic laser,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1978).

  12. 12.

    D. Williams, D. C. Wenstrand, et al., “Collisional broadening of infrared absorption lines,” Mol. Phys.,20, No. 5 (1971).

  13. 13.

    R. H. Hunt, R. A. Tath, and E. K. Plyler, “High-resolution determination of the width of self-broadened lines of carbon monoxide,” J. Chem. Phys.,49, No. 9 (1968).

  14. 14.

    N. G. Basov, V. I. Dolinina, et al., “A theoretical investigation of the generation characteristics of a CO electric-ionization laser,” Preprint Fiz. Inst. Akad. Nauk SSSR No. 1 (1976).

  15. 15.

    Yu. B. Konev, I. V. Kochetov, et al., “An analysis of the kinetic processes determining the parameters of CO lasers,” Preprint Inst. At. Energ. No. 2821 (1977).

Download references

Author information

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 69–75, January–February, 1982.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasilik, N.Y., Margolin, A.D. & Shmelev, V.M. Influence of the shape of the supersonic part of a nozzle on the rate of redistribution of molecules over vibrational levels in the active medium of a CO gasdynamic laser. J Appl Mech Tech Phys 23, 62–67 (1982). https://doi.org/10.1007/BF00911980

Download citation

Keywords

  • Mathematical Modeling
  • Mechanical Engineer
  • Industrial Mathematic
  • Active Medium
  • Vibrational Level