Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Solution of plane and axisymmetric boundary-value problems of thermoviscoplasticity with allowance for creep damage to the material

This is a preview of subscription content, log in to check access.

Literature Cited

  1. 1.

    E. R. Golubovskii, “Rupture strength and fracture criteria in the complex loading of alloy ÉI-698 VD,” Probl. Prochn., No. 8, 11–17 (1984).

  2. 2.

    O. Zenkevich, The Finite Elements Method in Engineering [Russian translation], Mir, Moscow (1975).

  3. 3.

    A. V. Lykov, Theory of Heat Conduction [in Russian], Vysshaya Shkola, Moscow (1967).

  4. 4.

    N. N. Malinin and A. A. Nigin, “Rupture strength of turbine disks,” Raschet. Prochn.,20, 30–40 (1979).

  5. 5.

    N. N. Malinin and A. A. Nigin, “Rupture strength of specimens with a stress raiser under nonsteady loading,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 11, 28–33 (1974).

  6. 6.

    N. N. Malinin, Creep of Machine Structural Elements [in Russian], Mashinostroenie, Moscow (1981).

  7. 7.

    T. N. Mozharovskaya, “Creep and rupture strength of pearlitic and austenitic steels under proportional loading in a plane stress state,” Probl. Prochn., No. 4, 17–22 (1985).

  8. 8.

    G. S. Pisarenko and A. A. Lebedev, Resistance of Materials to Deformation in a Complex Stress State [in Russian], Naukova Dumka, Kiev (1969).

  9. 9.

    V. P. Rabinovich, Experimental study of the strength of disks operating under creep conditions,” Tr. TsNIITMASh, 25–45 (1960).

  10. 10.

    Yu. N. Rabotnov, Creep Problems of Structural Members, Elsevier (1964).

  11. 11.

    V. P. Sdobyrev, “Rupture strength criteria for certain heat-resistant alloys in a complex stress state,” Izv. Akad. Nauk, SSSR, Mekh. Mashinostr., No. 6, 25–45 (1959).

  12. 12.

    L. J. Segerlind, Applied Finite Element Analysis, Wiley (1976).

  13. 13.

    I. I. Trunin, “Strength criteria under creep conditions in a complex stress state,” Prikl. Mekh.,1, No. 7, 77–83 (1965).

  14. 14.

    D. Hayhurst, “Stress redistribution and fracture in the creep of uniformly tensioned thin plates with a circular hole,” Trans. ASME, Prikl. Mekh., No. 1, 253–260 (1973).

  15. 15.

    Yu. N. Shevchenko and R. G. Terekhov, Physical Equations of Thermoviscoelasticity [in Russian], Naukova Dumka, Kiev (1982).

  16. 16.

    J. Walczak, J. Sieniawski, and K. Bathe, “On the analysis of creep stability and rupture”, Comput. Struct.,17, Nos. 5–6, 783–792 (1983).

Download references

Additional information

Translated from Prikladnaya Mekhanika, Vol. 22, No. 8, pp. 3–14, August, 1986.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shevchenko, Y.N., Mazur, V.N. Solution of plane and axisymmetric boundary-value problems of thermoviscoplasticity with allowance for creep damage to the material. Soviet Applied Mechanics 22, 695–704 (1986). https://doi.org/10.1007/BF00911319

Download citation

Keywords

  • Creep Damage